Learning-Augmented Online Algorithms

Bertrand Simon

IN2P3 Computing Center / CNRS, Villeurbanne

Journées CALAMAR – January 2024
Motivating example: binary search

\[n \text{ elements} \]

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>40</td>
<td>43</td>
<td>46</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>56</td>
<td>59</td>
<td>60</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[q = 16 \]
Motivating example: binary search

\[n \text{ elements} \]

\[
\begin{array}{cccccccccccccccc}
8 & 11 & 14 & 16 & 18 & 25 & 30 & 36 & 40 & 43 & 46 & 49 & 50 & 53 & 54 & 56 & 59 & 60 & 63 \\
\end{array}
\]

\[q = 16 \]
Motivating example: binary search

n elements

\[
\begin{array}{cccccccccccccccc}
8 & 11 & 14 & 16 & 18 & 25 & 30 & 36 & 40 & 43 & 46 & 49 & 50 & 53 & 54 & 56 & 59 & 60 & 63 \\
\end{array}
\]

$q = 16$

Prediction: position $h(q)$

Error: $\eta = |h(q) - \text{index}(q)|$

Classic: $\Theta(\log n)$

Practical applications

[KraskaBeutalChiDeanPolyzotis'18]
Motivating example: binary search

n elements

$q = 16$
Motivating example: binary search

Consider an array of n elements: $8, 11, 14, 16, 18, 25, 30, 36, 40, 43, 46, 49, 50, 53, 54, 56, 59, 60, 63$.

Let's search for the element $q = 16$. In a classic binary search, the prediction is $h(q)$, and the error is $\eta = |h(q) - \text{index}(q)|$.

The prediction can be optimized with learning, leading to $\Theta(\log \eta)$ predictions in practice.

The algorithm is described in [KraskaBeutalChiDeanPolyzotis'18].
Motivating example: binary search

\[
\begin{array}{ccccccccc}
8 & 11 & 14 & 16 & 18 & 25 & 30 & 36 & 40 & 43 & 46 & 49 & 50 & 53 & 54 & 56 & 59 & 60 & 63 \\
\end{array}
\]

\(n \) elements

\(q = 16 \)
Motivating example: binary search

Motivating Example: Binary Search

Consider an array of *n* elements:

| 8 | 11 | 14 | 16 | 18 | 25 | 30 | 36 | 40 | 43 | 46 | 49 | 50 | 53 | 54 | 56 | 59 | 60 | 63 |

Let `q = 16`.

Prediction: position `h(q)`

Error:

\[
\eta = |h(q) - \text{index}(q)|
\]
Motivating example: binary search

Prediction: position $h(q)$

Error: $\eta = |h(q) - \text{index}(q)|$
Motivating example: binary search

Prediction: position $h(q)$
Error: $\eta = |h(q) - \text{index}(q)|$
Motivating example: binary search

Prediction: position $h(q)$

Error: $\eta = |h(q) - \text{index}(q)|$
Motivating example: binary search

n elements

| 8 | 11 | 14 | 16 | 18 | 25 | 30 | 36 | 40 | 43 | 46 | 49 | 50 | 53 | 54 | 56 | 59 | 60 | 63 |

$q = 16$

Prediction: position $h(q)$
Error: $\eta = |h(q) - \text{index}(q)|$
Motivating example: binary search

\[n \text{ elements} \]

| 8 | 11 | 14 | 16 | 18 | 25 | 30 | 36 | 40 | 43 | 46 | 49 | 50 | 53 | 54 | 56 | 59 | 60 | 63 |
\[q = 16 \]

Prediction: position \(h(q) \)
Error: \(\eta = |h(q) - \text{index}(q)| \)
Motivating example: binary search

Prediction: position $h(q)$
Error: $\eta = |h(q) - \text{index}(q)|$
Motivating example: binary search

Prediction: position $h(q)$

Error: $\eta = |h(q) - \text{index}(q)|$
Motivating example: binary search

Prediction: position $h(q)$

Error: $\eta = |h(q) - \text{index}(q)|$
Motivating example: binary search

Prediction: position $h(q)$

Error: $\eta = |h(q) - \text{index}(q)|$
Motivating example: binary search

Prediction: position $h(q)$
Error: $\eta = |h(q) - \text{index}(q)|$
Motivating example: binary search

Prediction: position $h(q)$

Error: $\eta = |h(q) - \text{index}(q)|$
Motivating example: binary search

Prediction: position $h(q)$

Error: $\eta = |h(q) - \text{index}(q)|$
Motivating example: binary search

| 8 | 11 | 14 | 16 | 18 | 25 | 30 | 36 | 40 | 43 | 46 | 49 | 50 | 53 | 54 | 56 | 59 | 60 | 63 |

n elements

$q = 16$

Prediction: position $h(q)$

Error: $\eta = |h(q) - \text{index}(q)|$

Classic: $\Theta(\log n)$

Predictions $\Theta(\log \eta)$

Practical applications [KraskaBeutalChiDeanPolyzotis’18]
Properties we seek

- competitive ratio / complexity / …

Algorithms are oblivious to η

Prediction h should be *learnable*, e.g., compact
Properties we seek

- Competitive ratio / complexity / ...
- Consistency
- Robustness

Algorithms are oblivious to η

Prediction h should be learnable, e.g., compact
Properties we seek

- Competitive ratio / complexity / ...

Algorithms are oblivious to η

Prediction h should be *learnable*, e.g., compact
Properties we seek

- Competitive ratio /
- Complexity /
- \(\eta \)

Algorithms are oblivious to \(\eta \)

Prediction \(h \) should be *learnable*, e.g., compact
Properties we seek

- Competitive ratio / complexity / …
- Prediction error (η)
- Competitive ratio / complexity / …
- Prediction error (η)
- Robustness

Names vary in the literature

Algorithms are oblivious to η

Prediction h should be *learnable*, e.g., compact
"Classic" Beyond worst-case analysis

Future instance: \(X_1; X_2; X_3; X_4; X_5; \ldots \)

- **Lookahead**
 \(X_1 = 5 \)

- **Semi-online**
 \(\sum_i X_i = 30 \)

- **Random arrival**
 Advice: 1101110

- **Stochastic input**
 \(X_i \sim \mathcal{N}(10, 5) \)

- **Robust analysis**
 \(X_1 = 5 \pm 2, X_2 = 7 \pm 3, \ldots \)

😊 Strong assumptions, needs some perfect information (oracle)

HERE: no assumption on the predictor allows plug-and-play predictors

Bertrand Simon	Learning-Augmented Online Algorithms
Landscape preview

100s publications since 2018
https://algorithms-with-predictions.github.io/
Most common framework used

Input

Input

Input

Input

Input

Online algorithm A

time

Objective: "minimize" competitive ratio

$c_A(\eta) = \max \frac{\text{cost}_A(I)}{\text{OPT}(I)}$

Consistency $c_A(0)$

Robustness $c_A(\infty)$

Smoothness "slope" of $c_A(\eta)$
Most common framework used

Input
Input
Input
Input
Input

error() = \eta

Online algorithm A

time
Most common framework used

Online algorithm A

$$\text{error}(\text{Input}) = \eta$$

Objective: "minimize" competitive ratio

$$c_A(\eta) = \max_{I} \frac{\text{cost}_A(I)}{\text{OPT}(I)}$$

Consistency

Robustness

Smoothness: "slope" of $c_A(\eta)$
Most common framework used

Objective: “minimize” competitive ratio

\[c_A(\eta) = \max_i \frac{\text{cost}_A(i)}{\text{OPT}(i)} \]

- **Consistency**
 \[c_A(0) \]

- **Robustness**
 \[c_A(\infty) \]

- **Smoothness**
 “slope” of \[c_A(\eta) \]
Outline

1. Introduction
2. Ski rental & extensions
3. Preview of Paging and Graph Algorithms
4. Conclusion
First example: Ski rental

Cost to buy skis: b

Daily rent price: 1

\times ? # ski days (unknown)

Online algorithm: minimize $\max \frac{\text{cost}}{\text{OPT}}$

Best deterministic algo: buy at day $\approx b$

Worst-case = stop after day b:

$\text{OPT} = b$

$\text{cost} = 2b$

\Rightarrow competitive ratio $= 2$
First example: Ski rental

What should h predict?

- 😞 $h \rightarrow 0/1$: rent or buy? cannot measure η
- ☝️ $h \rightarrow x$ with $\eta = |h - x|$

What should the algorithm do?

Cost to buy skis: b

Daily rent price: 1

ski days (unknown): x
First example: Ski rental

What should h predict?

- 🙁 $h \rightarrow 0/1$: rent or buy? cannot measure η
- ☺ $h \rightarrow x$ with $\eta = |h - x|$

What should the algorithm do?

Naive: if $h \geq b$ then buy on day 1 else rent forever
First example: Ski rental

What should \(h \) predict?

- ☹ \(h \rightarrow 0/1: \) rent or buy? cannot measure \(\eta \)
- ☻ \(h \rightarrow x \) with \(\eta = |h - x| \)

What should the algorithm do?

Naive: if \(h \geq b \) then buy on day 1 else rent forever

Lemma

The competitive ratio of **Naive** is \(1 + \eta / \text{Opt} \).
A robust algorithm for Ski Rental [Purohit Switkina Kumar’18]

Intuition: if $h < x$, we should not buy at day 1

How long should we rent? depends on the predictor’s “trustworthiness”

$\lambda = 0$ Consistent $\lambda = 1$ Robust

$\text{SkiPred}(\lambda)$:
- If $h \geq b$: rent $\lceil \lambda b \rceil$ days
- Else: rent $\lceil b/\lambda \rceil$ days

Theorem

$\text{SkiPred}\left(\frac{1}{2}\right)$ is:
\[
\min \left(3, \frac{5}{3} + 2 \cdot \frac{\eta}{\text{OPT}} \right) - \text{competitive}.
\]
A robust algorithm for Ski Rental [Purohit Switkina Kumar’18]

Intuition: if $h \leq x$, we should not buy at day 1

How long should we rent? depends on the predictor’s “trustworthiness”

Consistent

$\lambda = 0$

Robust

$\lambda = 1$

$\text{SkiPred}(\lambda)$:

- If $h \geq b$: rent $\lceil \lambda b \rceil$ days
- Else: rent $\lceil b/\lambda \rceil$ days

SkiPred$(\frac{1}{2})$ is: $\min \left(3, 1.5 + 2 \cdot \frac{\eta}{\text{OPT}} \right)$ - competitive.
A robust algorithm for Ski Rental [Purohit Switkina Kumar’18]

Intuition: if \(h \geq b \), we should not buy at day 1

How long should we rent? depends on the predictor’s “trustworthiness”

\[
\text{SkiPred}(\lambda): \begin{cases}
\text{If } h \geq b: \text{ rent } \lceil \lambda b \rceil \text{ days} \\
\text{Else: rent } \lceil b/\lambda \rceil \text{ days}
\end{cases}
\]

\[\text{Theorem} \quad \text{SkiPred}(\lambda) \text{ is: } \min \left(\frac{1+\lambda}{\lambda}, (1+\lambda) + \frac{1}{1-\lambda} \cdot \frac{\eta}{OPT} \right) \text{ - competitive.}\]
Randomized ski rental

Classic randomized ski rental $\rightarrow \frac{e}{e-1} \approx 1.58$-competitive
Randomized ski rental

Classic randomized ski rental $\rightarrow \frac{e}{e-1} \approx 1.58$-competitive

Theorem

There is a $O\left(\min\left(\frac{1}{1-e^\lambda}, \frac{\lambda}{1-e^{-\lambda}} \left(1 + \frac{\eta}{\Omega_{\text{OPT}}}\right)\right)\right)$-competitive algorithm.

e.g., $\lambda = 1/2$
Consistency vs Robustness

Lower bounds:

- Randomized: matches UB [WeiZhang’20]
- Deterministic: LB a bit lower but
 [AngelopoulosDürrJinKamaliRenault’19]
Multi-round ski rental

[Antoniadis Coester Elias Polak Simon ’21]

Dynamic Power Management: shift of focus

- focus first on 2 states
- is “free” over many rounds (experts framework)
Dynamic Power Management: shift of focus

- focus first on 2 states

- is “free” over many rounds (experts framework)
Dynamic Power Management: shift of focus

- focus first on 2 states
- is “free” over many rounds (experts framework)
Multi-round ski rental [Antoniadis Coester Elias Polak Simon ’21]

Dynamic Power Management: shift of focus

- focus first on 2 states

- is “free” over many rounds (experts framework)
New tradeoff: \(\text{NAIVE} \) vs \(\text{ONLINE} \) in cost = \(\text{NAIVE} \cdot \text{OPT} + \text{ONLINE} \cdot \eta \)

Use the whole prediction

Example for a \(\approx 1.16 \)-consistent, 0.38-smooth solution:
New tradeoff: vs in cost $= \cdot \text{OPT} + \cdot \eta$

Use the whole prediction

Example for a ≈ 1.16-consistent, 0.38-smooth solution:
New tradeoff: $\eta \cdot \text{Opt}$

Use the whole prediction

Example for a ≈ 1.16-consistent, 0.38-smooth solution:

1.0 1.1 1.2 1.3 1.4 1.5
0.0 0.2 0.4 0.6 0.8
NAIVE
ONLINE

Pareto frontier: smoothness = $f(\text{consistency})$

1.0 1.1 1.2 1.3 1.4 1.5
0.0 0.2 0.4 0.6 0.8
1.0
0.0
0.2
0.4
0.8
1.2
1.4

Time ($\times b$)

Probability that the algorithm buys before that time
$h = 0.1$
$h = 0.3$
$h = 0.5$
$h = 0.65$
$h = 0.8$
$h = 0.95$
$h = 1.1$
$h = 1.4$
$h = 1.7$

Case 1, $h < 0.5857$
Case 2, $h [0.5857, 1]$
Case 3, $h > 1$

Example of simulation results

4 actual idle states, random instances + predictions

Competitive ratio

Standard online algorithm
Purohit et al.
Our algorithm

Nitrate parameter of the synthetic predictor

1.0 1.1 1.2 1.3 1.4 1.5

Competitive ratio

Noise parameter σ of the synthetic predictor

1.0 2.0 4.0 6.0 8.0
Outline

1. Introduction
2. Ski rental & extensions
3. Preview of Paging and Graph Algorithms
4. Conclusion
Paging with predictions

\[k = 4 \quad \text{misses: } 1 \]

\[\text{pages } \in \{A, B, \ldots, F\} \]

\[\text{1} \]

\[\text{A} \]
Paging with predictions

$k = 4$ misses: 2

pages $\in \{A, B, \ldots, F\}$

\[\begin{array}{c|c}
A & 1 & 2 \\
A & A & B \\
\end{array}\]
Paging with predictions

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

$k = 4$ misses: 2 pages $\in \{A, B, \ldots, F\}$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
Paging with predictions

k = 4 misses: 3

pages ∈ \{A, B, \ldots, F\}

\[\begin{array}{c}
\text{A} \\
\text{B} \\
\end{array} \]

1 2 3 4

A B A C
Paging with predictions

$\begin{array}{|c|}
\hline
k = 4 \quad \text{misses: 4} \\
C \\
B \\
A \\
\hline
\end{array}$

$\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
A & B & A & C & D \\
\end{array}$
Paging with predictions

$k = 4$ misses: 5

pages $\in \{A, B, \ldots, F\}$
Paging with predictions

\[k = 4 \quad \text{misses: 6} \]

\[
\begin{array}{c}
A \\
\hline
B \\
\hline
C \\
\hline
D \\
\hline
E \\
\hline
F
\end{array}
\]

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
A & B & A & C & D & E & F
\end{array}
\]
Paging with predictions

\[k = 4 \quad \text{misses: 6} \]

\[
\begin{array}{c}
A \\
B \\
C \\
D \\
E \\
F
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
A & B & A & C & D & E & F & A
\end{array}
\]

\[\text{pages} \in \{A, B, \ldots, F\} \]
Paging with predictions

\[k = 4 \quad \text{misses: 7} \]

\[
\begin{array}{c}
D \\
F \\
E \\
A \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
A & B & A & C & D & E & F & A & B \\
\end{array}
\]
Paging with predictions

$k = 4$ misses: 7

$$\text{pages } \in \{A, B, \ldots, F\}$$

\[
\begin{array}{c}
A \\
B \\
C \\
D \\
E \\
A
\end{array}
\]

[LykourisVassilvitskii’18]

1 2 3 4 5 6 7 8 9 10

A B A C D E F A B E
Paging with predictions

\[k = 4 \quad \text{misses: 8} \]

\[
\begin{array}{c}
A \\
B \\
C \\
D \\
E \\
F \\
\end{array}
\]

\[
\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
A & B & A & C & D & E & F & A & B & E & F \\
\end{array}
\]
Paging with predictions

$k = 4$ misses: 8

pages $\in \{A, B, \ldots, F\}$

F
B
E
A

1 2 3 4 5 6 7 8 9 10 11

A B A C D E F A B E F

[LykourisVassilvitskii’18]
Paging with predictions

$k = 4$ misses: 8

\[
\begin{array}{c}
\text{F} \\
\text{B} \\
\text{E} \\
\text{A}
\end{array}
\]

pages $\in \{A, B, \ldots, F\}$

Q: What to predict?

Lookahead (next q requests)

▶️ 😞 useless in the worst case

Strong Lookahead (next requests until q distinct)

▶️ 😞 huge, hard to predict

Next arrival time of the current request

▶️ 😊 compact, enough to compute OPT, arguably learnable

▶️ error η_i at round i: distance between predicted time and actual time combined error $\eta = \sum \eta_i$.

▶️ \implies get a $\approx \min(\log k, \log \frac{\eta}{\text{OPT}})$-competitive algorithm
Paging with predictions

\[k = 4 \quad \text{misses: 8} \]

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
| & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\text{A} & \text{B} & \text{A} & \text{C} & \text{D} & \text{E} & \text{F} & \text{A} & \text{B} & \text{E} & \text{F} \\
\text{F} & & & & & & & & & & & \\
\text{B} & & & & & & & & & & & \\
\text{E} & & & & & & & & & & & \\
\text{A} & & & & & & & & & & & \\
\end{array}
\]

\text{next: 3 9 8 - - 10 11 - - - -}

\text{Q: What to predict?}

\begin{itemize}
\item \textbf{Lookahead (next } q \text{ requests)}
 \begin{itemize}
 \item 😞 useless in the worst case
 \end{itemize}
\end{itemize}

\begin{itemize}
\item \textbf{Strong Lookahead} (next requests until } q \text{ distinct)
 \begin{itemize}
 \item 😞 huge, hard to predict
 \end{itemize}
\end{itemize}

\text{Next arrival time of the current request}

\begin{itemize}
\item 😊 compact, enough to compute } OPT, \text{ arguably learnable
\item error } \eta_i \text{ at round } i : \text{ distance between predicted time and actual time combined error } \eta = \sum \eta_i. \\
\item \implies \text{ get a } \approx \min(\log k, \log \frac{\eta}{OPT})\text{-competitive algorithm}
\end{itemize}
Paging with predictions – Overview of models

Predictions = time of next occurrence of current page

- Lykouris Vassilvitskii (2021 JACM); Rohatgi (SODA 2020); Wei (APPROX/RANDOM 2020)

Predictions = all pages before next occurrence of current page

- Jiang Panigrahi Su (ICALP 2020)

Predictions = state of OPT (which pages in cache)

- Antoniadis Coester Elias Polak Simon (ICML 2020)

Multiple predictors — time of next occurrence of current page

- Emek Kutten Shi (ITCS 2020)

Prediction queries — obtain next occurrence of any page in cache

- Im Kumar Petety Purohit (ICML 2022)

Succinct predictions = 1 bit of information (\approx to evicted or not)

- Antoniadis Boyar Eliáš Favrholdt Hoeksma Larsen Polak Simon (ICML 2023)
A general error measure for graph algorithms

[Azar Panigrahi Touitou, Online Graph Algorithms with Predictions, SODA 2022]

Error measure for predicting a set of points in a metric space $\eta = (D, \Delta)$:

$D =$ transportation distance ; $\Delta =$ # outliers

Theorem

*For the Steiner Tree and Facility Location problems, if the error of the predicted input (resp. set of terminal and set of clients) is (D, Δ), there is an algorithm of cost at most $O(\log \Delta) \cdot \text{OPT} + O(D)$.***
Faster matching via learned duals

[Dinitz Im Lavastida Moseley Vassilvitskii NeurIPS 2021]
[Chen Silwal Vakilian Zhang ICML 2022]

Theorem

Given a weighted bipartite graph and predicted dual $\hat{\gamma}$, there exists an algorithm that finds a minimum weight perfect matching in time $O(m \sqrt{n} + (m + n \log n) \| y^* - \hat{\gamma} \|_0)$, where y^* is an optimal dual solution.

Main ideas:

- use predicted dual as a warm start for the Hungarian algorithm
- if this dual is not feasible, adapt it
- actually design the algorithm that get the solution faster if the prediction error is small
- show that the duals can be learned from samples of a probabilistic input
Outline

1. Introduction
2. Ski rental & extensions
3. Preview of Paging and Graph Algorithms
4. Conclusion
Conclusion

Take-back messages

- fresh algorithm concepts
- relevant link ML – algorithms

Newer questions

- improve running time
- ensure learnability (e.g., PAC-learnability) \(\eta \approx \text{loss function} \)
- extensive experiments including ML predictors
- multiple predictors
- wrt renowned heuristics?