Learning-Augmented Online Algorithms

Bertrand Simon

IN2P3 Computing Center / CNRS, Villeurbanne
Journées CALAMAR - January 2024

Motivating example: binary search
n elements

8	11	14	16	18	25	30	36	40	43	46	49	50	53	54	56	59	60	63

$$
q=16
$$

Motivating example: binary search
n elements

Introductio
 Ski rental \& extensions
 Motivating example: binary search

n elements

8	11	14	16	18	25	30	36	40	43	46	49	50	53	54	56	59	60	63

$$
q=16
$$

Prediction: position $h(q) \quad$ Error: $\eta=\mid h(q)-$ index $(q) \mid$

 Ski rental \& extensions
 Motivating example: binary search

n elements

Prediction: position $h(q) \quad$ Error: $\eta=\mid h(q)-$ index $(q) \mid$

 Ski rental \& extensions
 Motivating example: binary search

n elements

Prediction: position $h(q) \quad$ Error: $\eta=\mid h(q)-$ index $(q) \mid$

maname
 Motivating example: binary search

n elements

Prediction: position $h(q) \quad$ Error: $\eta=\mid h(q)-$ index $(q) \mid$

maname
 Motivating example: binary search

n elements

Prediction: position $h(q) \quad$ Error: $\eta=\mid h(q)-$ index $(q) \mid$

maname
 Motivating example: binary search

n elements

8	11	14	16	18	25	30	36	40	43	46	49	50	53	54	56	59	60	63

Prediction: position $h(q) \quad$ Error: $\eta=\mid h(q)-$ index $(q) \mid$

 Ski rental \& extensions
 Motivating example: binary search

n elements

8	11	14	16	18	25	30	36	40	43	46	49	50	53	54	56	59	60	63

Prediction: position $h(q) \quad$ Error: $\eta=\mid h(q)-$ index $(q) \mid$

 Ski rental \& extensions
 Motivating example: binary search

n elements

8	11	14	16	18	25	30	36	40	43	46	49	50	53	54	56	59	60	63

Prediction: position $h(q) \quad$ Error: $\eta=\mid h(q)-$ index $(q) \mid$

Motivating example: binary search
n elements

Prediction: position $h(q) \quad$ Error: $\eta=\mid h(q)-$ index $(q) \mid$

Motivating example: binary search
n elements

Prediction: position $h(q) \quad$ Error: $\eta=\mid h(q)-$ index $(q) \mid$

Motivating example: binary search
n elements

Prediction: position $h(q) \quad$ Error: $\eta=|h(q)-\operatorname{index}(q)|$

Motivating example: binary search

Prediction: position $h(q) \quad$ Error: $\eta=\mid h(q)-$ index $(q) \mid$

Motivating example: binary search

Prediction: position $h(q) \quad$ Error: $\eta=\mid h(q)-$ index $(q) \mid$

Prediction: position $h(q) \quad$ Error: $\eta=\mid h(q)-$ index $(q) \mid$

Practical applications [KraskaBeutalChiDeanPolyzotis'18]

Properties we seek

Algorithms are oblivious to η
Prediction h should be learnable, e.g., compact

Properties we seek

Algorithms are oblivious to η
Prediction h should be learnable, e.g., compact

Properties we seek

Algorithms are oblivious to η
Prediction h should be learnable, e.g., compact

Properties we seek

Algorithms are oblivious to η
Prediction h should be learnable, e.g., compact

Properties we seek

Algorithms are oblivious to η
Prediction h should be learnable, e.g., compact

Classic" Beyond worst-case analysis

Future instance: $\quad X_{1} ; X_{2} ; X_{3} ; X_{4} ; X_{5} ; \ldots$

© Strong assumptions, needs some perfect information (oracle)

HERE: no assumption on the predictor

allows plug-and-play predictors

57.7% confidence

Landscape preview

learned
 prediction ned

untrusted augmented
learning-aug
advice
Denomination
online conversion capacity scaling searchMTS
multiple-expert
query policies expert S ecretar Y iner tree primal-dual S MQatching eneroy wi w reng ving energy ki or reng ing no follod best neighbor coaching on aching tasmana
bloom filters routing graph algorithms management

100s publications since 2018
https://algorithms-with-predictions.github.io/

Most common framework used

Objective: "minimize" competitive ratio $c_{A}(\eta)=\max _{I} \frac{\operatorname{cost}_{A}(I)}{\operatorname{OPT}(I)}$

$c_{A}(0)$

Outline

(1) Introduction

(2) Ski rental \& extensions

(3) Preview of Paging and Graph Algorithms

4. Conclusion

cost to buy skis
daily rent price
? \# ski days (unknown)

Online algorithm: minimize $\max \frac{\operatorname{cost}}{\mathrm{OPT}}$

Best deterministic algo: buy at day $\approx b$

Worst-case $=$ stop after day b :

- $\mathrm{Opt}=b$
- cost $=2 b$
- \Longrightarrow competitive ratio $=2$

What should h predict ?

- $)^{-} h \longrightarrow 0 / 1$: rent or buy ? cannot measure η
- ;) $h \longrightarrow x$ with $\eta=|h-x|$

What should the algorithm do ?

cost to buy skis
daily rent price
? \# ski days (unknown)

What should h predict ?
\rightarrow - $h \longrightarrow 0 / 1$: rent or buy ? cannot measure η
$>\cdot(\cdot h \longrightarrow x$ with $\eta=|h-x|$
What should the algorithm do ?
NAIVE: if $h \geq b$ then buy on day 1 else rent forever

cost to buy skis
daily rent price
? \# ski days (unknown)

What should h predict?

- $) h \longrightarrow 0 / 1$: rent or buy ? cannot measure η
- ;) $h \longrightarrow x$ with $\eta=|h-x|$

What should the algorithm do ?
NAIVE: if $h \geq b$ then buy on day 1 else rent forever

Lemma

The competitive ratio of NAIVE is $1+\eta$ / Opt.

Intuition: if X , we should not buy at day 1
How long should we rent? depends on the predictor's "trustworthiness"

$\operatorname{SkiPred}(\lambda):-\operatorname{If} h \geq b:$ rent $\lceil\lambda b\rceil$ days \downarrow Else: rent $\lceil b / \lambda\rceil$ days

| rent | b | h |
| :--- | :--- | :--- | time

Theorem

$\operatorname{SKIPRED}\left(\frac{1}{2}\right)$ is: $\min \left(3,1.5+2 \cdot \frac{\eta}{\mathrm{OPT}}\right)$-competitive.

Intuition: if $\begin{aligned} & \text { h } \\ & \text { h , we should not buy at day } 1\end{aligned}$
How long should we rent? depends on the predictor's "trustworthiness"

$\operatorname{SkiPred}(\lambda):-\operatorname{If} h \geq b:$ rent $\lceil\lambda b\rceil$ days \rightarrow Else: rent $\lceil b / \lambda\rceil$ days
rent \quad h b \longrightarrow time

Theorem

$\operatorname{SKIPRED}\left(\frac{1}{2}\right)$ is: $\min \left(3,1.5+2 \cdot \frac{\eta}{\mathrm{OPT}}\right)$-competitive.

Intuition: if $\begin{aligned} & \text { h } \\ & \text { h , we should not buy at day } 1\end{aligned}$
How long should we rent? depends on the predictor's "trustworthiness"

$\operatorname{SkiPred}(\lambda):-\operatorname{If} h \geq b:$ rent $\lceil\lambda b\rceil$ days \rightarrow Else: rent $\lceil b / \lambda\rceil$ days
rent \quad h b \longrightarrow time

Theorem

$\operatorname{SKIPRED}(\lambda)$ is: $\min \left(\frac{1+\lambda}{\lambda},(1+\lambda)+\frac{1}{1-\lambda} \cdot \frac{\eta}{\mathrm{OPT}}\right)$-competitive.

Classic randomized ski rental $\rightarrow \frac{e}{e-1} \approx 1.58$-competitive

Introduction Ski rental \& extensions

Randomized ski rental

Classic randomized ski rental $\rightarrow \frac{e}{e-1} \approx 1.58$-competitive

Theorem

There is a $O\left(\min \left(\frac{1}{1-e^{\lambda}}, \frac{\lambda}{1-e^{-\lambda}}\left(1+\frac{\eta}{\mathbf{O P T}^{\prime}}\right)\right)\right)$-competitive algorithm.

e.g., $\lambda=1 / 2$

ONLINE

Lower bounds:

- Randomized: matches UB [WeiZhang'20]
- Deterministic: LB a bit lower but

Dynamic Power Management: shift of focus

- focus first on 2 states
- il "free" over many rounds (experts framework)

Dynamic Power Management: shift of focus

- focus first on 2 states
- Ill is "free" over many rounds (experts framework)

Dynamic Power Management: shift of focus

- focus first on 2 states
- is "free" over many rounds (experts framework)

Dynamic Power Management: shift of focus

- focus first on 2 states
- Ill is "free" over many rounds (experts framework)

New tradeoff:

$$
\text { in cost }=\frac{1 \times 4}{n \mathrm{x}} \cdot \text { Opt }+\square \cdot \eta
$$

Use the whole prediction
Example for $\mathrm{a} \approx 1.16$-consistent, 0.38 -smooth solution:

Multi-round ski rental [Antoniadis Coester Elias Polak Simon '21]

Use the whole prediction
Example for $\mathrm{a} \approx 1.16$-consistent, 0.38 -smooth solution:

Multi-round ski rental [Antoniadis Coester Elias Polak Simon '21]

Outline

(1) Introduction

(2) Ski rental \& extensions
(3) Preview of Paging and Graph Algorithms
(4) Conclusion

$k=4 \quad$ misses: 1	\square
pages $\in\{A, B, \ldots, F\}$	\square

$k=4 \quad$ misses: 2	
pages $\in\{A, B, \ldots, F\}$	

12
A B

$k=4 \quad$ misses: 2	
	pages $\in\{A, B, \ldots, F\}$

123
A B A

$k=4 \quad$ misses: 3	
	pages $\in\{A, B, \ldots, F\}$

$$
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\text { A } & \text { B } & \text { A } & \text { C }
\end{array}
$$

Paging with predictions
 [LykourisVassilvitski'18]

$$
\begin{array}{|c|c|}
k=4 \quad \text { misses: } 4 & \\
\hline \mathrm{C} \\
\hline & \mathrm{~B} \\
\hline & \mathrm{~A} \\
\hline
\end{array}
$$

$$
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
A & B & A & C & D
\end{array}
$$

Paging with predictions
 [LykourisVassilvitski'18]

Paging with predictions
 [LykourisVassilvitski'18]

Paging with predictions
 [LykourisVassilvitski'18]

$k=4 \quad$ misses: 6	D
pages $\in\{A, B, \ldots, F\}$	E
	A

$$
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\mathrm{~A} & \mathrm{~B} & \mathrm{~A} & \mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{~F} & \mathrm{~A}
\end{array}
$$

Paging with predictions
 [LykourisVassilvitski'18]

$k=4 \quad$ misses: 7	D
pages $\in\{A, B, \ldots, F\}$	E
	A

$$
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
A & B & A & C & D & E & F & A & B
\end{array}
$$

Paging with predictions
 [LykourisVassilvitski'18]

$k=4 \quad$ misses: 7	D
pages $\in\{A, B, \ldots, F\}$	E
	A

$$
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
A & B & A & C & D & E & F & A & B & E
\end{array}
$$

Paging with predictions
 [LykourisVassilvitski'18]

$k=4 \quad$ misses: 8	D
pages $\in\{A, B, \ldots, F\}$	E
	A

$$
\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
A & B & A & C & D & E & F & A & B & E & F
\end{array}
$$

Paging with predictions
 [LykourisVassilvitski'18]

$k=4 \quad$ misses: 8	F
pages $\in\{A, B, \ldots, F\}$	E
	A

$$
\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
A & B & A & C & D & E & F & A & B & E & F
\end{array}
$$

Q: What to predict?

Lookahead (next q requests)

- © useless in the worst case

Strong Lookahead
(next requests until q distinct)

- © huge, hard to predict

Next arrival time of the current request

- :) compact, enough to compute Opt, arguably learnable
- error η_{i} at round i : distance between predicted time and actual time combined error $\eta=\sum \eta_{i}$.
- \Longrightarrow get $\mathrm{a} \approx \min \left(\log k, \log \frac{\eta}{\mathrm{OPT}}\right)$-competitive algorithm

Q: What to predict?

Lookahead (next q requests)

- :) useless in the worst case

Strong Lookahead
(next requests until q distinct)

- © huge, hard to predict

Next arrival time of the current request

- :) compact, enough to compute Opt, arguably learnable
- error η_{i} at round i : distance between predicted time and actual time combined error $\eta=\sum \eta_{i}$.
- \Longrightarrow get $\mathrm{a} \approx \min \left(\log k, \log \frac{\eta}{\mathrm{OPT}}\right)$-competitive algorithm

Paging with predictions - Overview of models

Predictions $=$ time of next occurrence of current page

- Lykouris Vassilvitskii (2021 JACM); Rohatgi (SODA 2020); Wei (APPROX/RANDOM 2020)

Predictions $=$ all pages before next occurrence of current page

- Jiang Panigrahi Su (ICALP 2020)

Predictions $=$ state of ОРт (which pages in cache)

- Antoniadis Coester Elias Polak Simon (ICML 2020)

Multiple predictors - time of next occurrence of current page

- Emek Kutten Shi (ITCS 2020)

Prediction queries - obtain next occurrence of any page in cache

- Im Kumar Petety Purohit (ICML 2022)

Succinct predictions $=1$ bit of information (\approx to evicted or not)

- Antoniadis Boyar Eliáš Favrholdt Hoeksma Larsen Polak Simon (ICML 2023)

A general error measure for graph algorithms

[Azar Panigrahi Touitou, Online Graph Algorithms with Predictions, SODA 2022]

Figure 1: An illustration of metric error with outliers. The figur
Error measure for predicting a set of points in a metric space $\eta=(D, \Delta)$: $\mathrm{D}=$ transportation distance ;
$\Delta=\#$ outliers

Theorem

For the Steiner Tree and Facility Location problems, if the error of the predicted input (resp. set of terminal and set of clients) is (D, Δ), there is an algorithm of cost at most $O(\log \Delta)$ Opt $+O(D)$.

Introduction Ski rental \& extensions
 Faster matching via learned duals

[Dinitz Im Lavastida Moseley Vassilvitskii NeurIPS 2021]
 [Chen Silwal Vakilian Zhang ICML 2022]

Theorem

Given a weighted bipartite graph and predicted dual \hat{y}, there exists an algorithm that finds a minimum weight perfect matching in time $O\left(m \sqrt{n}+(m+n \log n)\left\|y^{*}-\hat{y}\right\|_{0}\right)$, where y^{*} is an optimal dual solution.

Main ideas:

- use predicted dual as a warm start for the Hungarian algorithm
- if this dual is not feasible, adapt it
- actually design the algorithm that get the solution faster if the prediction error is small
- show that the duals can be learned from samples of a probabilistic input

Irtroduction

(2) Ski rental \& extensions

(3) Preview of Paging and Graph Algorithms

4 Conclusion

Conclusion

Take-back messages

-

- fresh algorithm concepts
- relevant link ML - algorithms

Newer questions

- improve running time
- ensure learnability (e.g., PAC-learnability) / $\eta \approx$ loss function
- extensive experiments including ML predictors
- multiple predictors
- ll wrt renowned heuristics ?

