Learning-Augmented Online Algorithms

Bertrand Simon

IN2P3 Computing Center / CNRS, Villeurbanne

Journées CALAMAR – January 2024

8	11	14	16	18	25	30	36	40	43	46	49	50	53	54	56	59	60	63
---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

n elements

8	11	14	16	18	25	30	36	40	43	46	49	50	53	54	56	59	60	63
---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Prediction: position h(q) Error: $\eta = |h(q) - index(q)|$

n elements

Prediction: position h(q)

Prediction: position h(q)

Prediction: position h(q)

Prediction: position h(q) Error: $\eta = |h(q) - index(q)|$

Practical applications [KraskaBeutalChiDeanPolyzotis'18]

Algorithms are oblivious to η

Preview of Paging and Graph Algorithms

Properties we seek

Algorithms are oblivious to η

Preview of Paging and Graph Algorithms

Conclusion

Properties we seek

Algorithms are oblivious to η

Preview of Paging and Graph Algorithms

Properties we seek

Algorithms are oblivious to η

Preview of Paging and Graph Algorithms

Properties we seek

Algorithms are oblivious to η

Strong assumptions, needs some perfect information (oracle)

Landscape preview

Objective: "minimize" competitive ratio $c_A(\eta) = \max_{I} \frac{cost_A(I)}{OPT(I)}$

 $c_A(0)$

Outline

2 Ski rental & extensions

3 Preview of Paging and Graph Algorithms

4 Conclusion

ntroduction	Ski renta	& extensions	Preview of	Paging and Graph Algorithms	Conclusio
First e	xample: Sl	ki rental		[Puroh	itSK'18]
	and the second	b		cost to buy skis	
		1		daily rent price	
		Х	?	# ski days (unknown))

Best deterministic algo: buy at day pprox b

Worst-case = stop after day b:

- ▶ Opt = *b*
- \triangleright cost = 2b
- $\blacktriangleright \implies$ competitive ratio = 2

First exa	mple: Ski re	ental	Preview of	Paging and Gradin Algorithms [Purohi	tSK'18]
				L	
	and the second	b		cost to buy skis	
	1			daily rent price	
		Х	?	<pre># ski days (unknown)</pre>	

What should h predict ?

 \blacktriangleright \odot h \longrightarrow 0/1: rent or buy ? cannot measure η

•
$$\bigcirc$$
 $h \longrightarrow x$ with $\eta = |h - x|$

What should the algorithm do ?

ntroduction	Ski rental & exter	isions	Preview of	Paging and Graph Algorithms	Conclusion
First exa	mple: Ski r	ental		[Purohi	tSK'18]
	de la	b		cost to buy skis	
	1			daily rent price	
		Х	?	# ski days (unknown)	

What should h predict ?

- \blacktriangleright \odot $h \longrightarrow 0/1$: rent or buy ? cannot measure η
- $\blacktriangleright \bigcirc h \longrightarrow x \text{ with } \eta = |h x|$

What should the algorithm do ?

NAIVE : if $h \ge b$ then buy on day 1 else rent forever

	Ski rental & extensio	ons Pr	eview of	Paging and Graph Algorithms	Conclusion
First exam	iple: Ski re	ntal		[PurohitS	5K'18]
. An		b		cost to buy skis	
	1			daily rent price	
		X	?	# ski days (unknown)	

What should h predict ?

- \blacktriangleright \odot $h \longrightarrow 0/1$: rent or buy ? cannot measure η
- $\blacktriangleright \ \textcircled{\odot} \ h \longrightarrow \ x \text{ with } \eta = |h x|$

What should the algorithm do ?

NAIVE : if $h \ge b$ then buy on day 1 else rent forever

Lemma

The competitive ratio of NAIVE is $1 + \eta / \mathbf{OPT}$.

Randomized ski rental

[Purohit Switkina Kumar'18]

Classic randomized ski rental $ightarrow rac{e}{e-1} pprox 1.58$ -competitive

Randomized ski rental

[Purohit Switkina Kumar'18]

Classic randomized ski rental $\rightarrow \ \frac{e}{e-1} \approx$ 1.58-competitive

Theorem

There is a
$$O\left(\min\left(\frac{1}{1-e^{\lambda}}, \frac{\lambda}{1-e^{-\lambda}}\left(1+\frac{\eta}{\mathbf{OPT}}\right)\right)\right)$$
-competitive algorithm.

Consistency vs Robustness

[Purohit Switkina Kumar'18]

Lower bounds:

Randomized: matches UB [WeiZhang'20]

Deterministic: LB a bit lower but

[AngelopoulosDürrJinKamaliRenault'19]

Dynamic Power Management: shift of focus

focus first on 2 states

Dynamic Power Management: shift of focus

focus first on 2 states

Dynamic Power Management: shift of focus

focus first on 2 states

Dynamic Power Management: shift of focus

focus first on 2 states

New tradeoff:

Use the whole prediction

Example for a \approx 1.16-consistent, 0.38-smooth solution:

New tradeoff:

Use the whole prediction

Example for a \approx 1.16-consistent, 0.38-smooth solution:

Outline

Introduction

2 Ski rental & extensions

3 Preview of Paging and Graph Algorithms

4 Conclusion

Introduction	Ski rental & extensions	Preview of	of Paging and Graph Algorithms	Conclusion
Paging with	predictions		[LykourisVassilvit	skii'18]
$k=4$ minimized pages $\in \{A, I\}$	isses: 4 C B,, F} B	1 2 3 A B A	4 5 C D	

Introduction	Ski rental & extensions		Pre	eview o	t Pagir	ng and	Graph Algorithms	Conclusion
Paging with	predictions				[L	yk	ourisVassil	vitskii'18]
$k=4$ minimized pages $\in \{A, b\}$	sses: 5 $\begin{bmatrix} D \\ C \\ B \\ A \end{bmatrix}$	1 A	2 B	3 A	4 C	5 D	6 E	

Introduction	Ski rental & extensions		Pre	eview o	t Pagir	ig and	Graph	Algorithms	Conclusion
Paging with	predictions				[L	yk	วนเ	risVassilv	itskii'18]
k=4 m pages $\in \{A, A\}$	isses: 6 $\begin{bmatrix} D \\ C \\ \end{bmatrix}$ B,,F} $\begin{bmatrix} A \\ \end{bmatrix}$	1 A	2 B	3 A	4 C	5 D	6 E	7 F	

Introduction	Ski rental & exten	sions	Pre	view of	f Pagir	ng and	Graph	Algorit	thms	Conclusion
Paging wit	h prediction	ons			[L	yk	oui	ris\	Vassilvits	kii'18]
k=4 n pages $\in \{A,$	$\begin{array}{c c} \text{nisses: } 6 & \hline D \\ \hline F \\ B, \dots, F \\ \hline A \end{array}$	1 A	2 B	3 A	4 C	5 D	6 E	7 F	8 A	

Introduction	Ski rental &	extensions		Pre	view o	f Pagir	ng and	Graph	Algori	thms			Conclu	ision
Paging w				[L	yk	oui	ris\	/as	ssilv	itsk	ii'18	8]		
k=4 pages \in	misses: 7 { <i>A</i> , <i>B</i> ,, <i>F</i> }	D F E A	1 A	2 B	3 A	4 C	5 D	6 E	7 F	8 A	9 B			

Introduction	Ski rental &	extensions		Pre	view of	f Pagir	ng and	Graph	Algori	thms			Conclu	usion
Paging w	ctions				[L	yk	oui	ris\	/as	ssi	vitsk	ii'1	8]	
$k=4$ pages \in	misses: 7 { <i>A</i> , <i>B</i> , , <i>F</i> }	D B E A	1 A	2 B	3 A	4 C	5 D	6 E	7 F	8 A	9 B	10 E		

Introduction	Ski rental & e>	ktensions	Preview of Paging and Graph Algorithms						Conclusion					
Paging with predictions			[LykourisVassilvitskii'18]											'18]
$k=4$ pages \in	misses: 8 { <i>A</i> , <i>B</i> ,, <i>F</i> }	D B E A	1 A	2 B	3 A	4 C	5 D	6 E	7 F	8 A	9 B	10 E	11 F	

Introduction	Ski rental & extensions		Preview of Paging and Graph Algorithms						Conclusion				
Paging v		[LykourisVassilvitskii'18]											
$k=4$ pages \in	misses: 8 $\begin{bmatrix} F \\ B \\ \hline E \\ A \end{bmatrix}$	1 A	2 B	3 A	4 C	5 D	6 E	7 F	8 A	9 B	10 E	11 F	

Next arrival time of the current request

- ▶ ☺ compact, enough to compute OPT, arguably learnable
- error η_i at round i: distance between predicted time and actual time combined error $\eta = \sum \eta_i$.

•
$$\implies$$
 get a \approx min(log k, log $\frac{\eta}{OPT}$)-competitive algorithm

Lookahead (next q requests)

Suseless in the worst case

Strong Lookahead
(next requests until q distinct)
© huge, hard to predict

Next arrival time of the current request

- \blacktriangleright \bigcirc compact, enough to compute O_{PT} , arguably learnable
- error η_i at round i: distance between predicted time and actual time combined error $\eta = \sum \eta_i$.

•
$$\implies$$
 get a \approx min(log k, log $\frac{\eta}{OPT}$)-competitive algorithm

Paging with predictions – Overview of models

- **Predictions = time of next occurrence of current page**
 - Lykouris Vassilvitskii (2021 JACM); Rohatgi (SODA 2020); Wei (APPROX/RANDOM 2020)
- **Predictions = all pages before next occurrence of current page**
 - Jiang Panigrahi Su (ICALP 2020)

Predictions = state of OPT (which pages in cache)

Antoniadis Coester Elias Polak Simon (ICML 2020)

Multiple predictors — time of next occurrence of current page

Emek Kutten Shi (ITCS 2020)

Prediction queries — obtain next occurrence of any page in cache

Im Kumar Petety Purohit (ICML 2022)

Succinct predictions = 1 bit of information (\approx to evicted or not)

Antoniadis Boyar Eliáš Favrholdt Hoeksma Larsen Polak Simon (ICML 2023)

A general error measure for graph algorithms

[Azar Panigrahi Touitou, Online Graph Algorithms with Predictions, SODA 2022]

Figure 1: An illustration of metric error with outliers. The figur

Error measure for predicting a set of points in a metric space $\eta = (D, \Delta)$: D = transportation distance ; $\Delta = \#$ outliers

Theorem

For the STEINER TREE and FACILITY LOCATION problems, if the error of the predicted input (resp. set of terminal and set of clients) is (D, Δ) , there is an algorithm of cost at most $O(\log \Delta) \operatorname{OPT} + O(D)$.

Faster matching via learned duals

[Dinitz Im Lavastida Moseley Vassilvitskii NeurIPS 2021]

[Chen Silwal Vakilian Zhang ICML 2022]

Theorem

Given a weighted bipartite graph and predicted dual \hat{y} , there exists an algorithm that finds a minimum weight perfect matching in time $O(m\sqrt{n} + (m + n \log n)||y^* - \hat{y}||_0)$, where y^* is an optimal dual solution.

Main ideas:

- use predicted dual as a warm start for the Hungarian algorithm
- if this dual is not feasible, adapt it
- actually design the algorithm that get the solution faster if the prediction error is small
- show that the duals can be learned from samples of a probabilistic input

Outline

Introduction

2 Ski rental & extensions

3 Preview of Paging and Graph Algorithms

Conclusion

Take-back messages

- fresh algorithm concepts
- relevant link ML algorithms

Newer questions

- improve running time
- ensure learnability (e.g., PAC-learnability) / $\eta \approx$ loss function
- extensive experiments including ML predictors
- multiple predictors

wrt renowned heuristics ?