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Today : online algorithms

® Talk 1 : Introduction to online algorithms - Nicolas Bousquet
(LIRIS).

e Talk 2 : Online algorithms with predictions - Bertrand Simon
(IN2P3).

® Talk 3 : Online edge coloring - Clément Legrand-Duchesne
(LaBRI).
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What is an online algorithm ?

® Input arrives sequentially over time (arrival
order).

® Decisions must be taken without the
knowledge of the future input.

® Decisions are irrevocable.
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lllustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.
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lllustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible

. /{lﬁ

— This algorithm may output a (A + 1) coloring. (while there exists a

2-coloring)
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lllustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible

. /{lw

— ThlS algorithm may OUtpUt a (A =+ ].) Coloring. (while there exists a

2-coloring)

Typical question : Can we find an algorithm that “approximates”
the quality of the best offline algorithm ?
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Types of adversaries

e.g. “a graph”, “a planar graph”, “an interval graph”
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Types of adversaries

< You shall choose an instance of that type.
/&T e.g. “a graph”, “a planar graph”, “an interval graph”
ey
This will be my (deterministic / randomized) algorithm. %\3

Héhéhé! Now, | will send you the worst possible 2nd
vertex of an instance and I'll see next... | am super evil !

This is my decision for the 2nd vertex. '%\3

3

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)
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Types of adversaries

{ You shall choose an instance of that type.
,&T e.g. “a graph”, “a planar graph”, “an interval graph”
)
This will be my (deterministic / randomized) algorithm. “a’n‘e

Héhéhé! Now, | will send you the worst possible 2nd
C¥¥  vertex of an instance and I'll see next... | am super evil !

This is my decision for the 2nd vertex. “%b‘l’e

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

Adaptive adversary. Knows the algorithm and all the choices
performed so far and chooses the next action. (stronger adversary)

Two levels of such adversaries
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Deterministic vs randomized

Two types of online algorithms : deterministic or randomized !
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Deterministic vs randomized

Two types of online algorithms : deterministic or randomized !

Remark :
Oblivious and adaptive adversaries are equivalent for deterministic
algorithms.
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Performance of online algorithms

Performace of an online algorithm Given a maximization
problem, / an instance, an algorithm is :

® a-competitive the algorithm outputs a solution of (expected)
size > - OPT(I) + ¢ where OPT(I) denotes the size of the
optimal solution.
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Performance of online algorithms

Performace of an online algorithm Given a maximization
problem, / an instance, an algorithm is :

® a-competitive the algorithm outputs a solution of (expected)
size > - OPT(I) + ¢ where OPT(I) denotes the size of the
optimal solution.

® q-strictly competitive the algorithm outputs a solution of
(expected) size > a- OPT (/) where OPT (/) denotes the size
of the optimal solution.

Remark :
e o <1andif a =1 we have an almost optimal algorithm.
® For a minimization function we can twist the definition

® For a deterministic algorithm, we are just looking for the worst
instance. For randomized algorithms, we look for the worst
possible expected size.
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Ski rental

We go to a ski station x days where x is unknown.
Each day, one can either :
e Buy a pair of skis for B euros (forever) or,
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e Buy a pair of skis for B euros (forever) or,

e Rent a pair of skis for 1 euro per day.

e Each day, if we haven't yet bought a pair of ski,
we can buy a pair.

"%m‘h? Buy a pair of ski or not.
Qt’ Decide when the ski trip is over.
Algorithm 1 : Buy a pair immediately.

Opponent strategy : Stop immediately after day 1.
Competitive ratio :

|

. — Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
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Competitive ratio :
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Ski rental

We go to a ski station x days where x is unknown.
Each day, one can either :

e Buy a pair of skis for B euros (forever) or,

e Rent a pair of skis for 1 euro per day.

e Each day, if we haven't yet bought a pair of ski,
we can buy a pair.

2 5 Buy a pair of ski or not.

e yap

tg Decide when the ski trip is over.
Algorithm 1 : Buy a pair immediately.

Opponent strategy : Stop immediately after day 1.
Competitive ratio :

|

. — Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
Opponent strategy : Decide to stay at the ski station forever.
Competitive ratio : g — +0o when n tends to infinity.

8/27



Compromise - Break-even algorithm

® The first B — 1 days, we rent skis.
® The B-th day, we buy the skis.
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Compromise - Break-even algorithm

® The first B — 1 days, we rent skis.
® The B-th day, we buy the skis.

Theorem

The break-even algorithm is (2 — %)-competitive ]

Proof : Let k the integer where the opponent decide to stop.

e If k < B —1, the optimal strategy consists in renting and
that's what we do.

e If k > B, the optimal strategy (of cost B) consists in buying
skis at day 1. The break-even strategy has cost 28 — 1.
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Optimality of the algorithm

Theorem

No deterministic online algorithm has a competitive ration better
than (2 — %).
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Optimality of the algorithm

Theorem

No deterministic online algorithm has a competitive ration better
than (2 — %).

Proof :
® Determinist strategy : choose an integer t.
e Opponent strategy : either choose t' < t or t/ = t.

® Make calculations...
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Randomization helps

Model :
"%S Choose a randomized algorithm.

Opponent chooses a date (fixed forever) knowing the random choices

we will make but not their output (oblivious adversary)
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Randomization helps

wpo . .
%ﬂe Choose a randomized algorithm.
Opponent ChOOSGS a date (flxed forever) knowing the random choices

we will make but not their output (oblivious adversary)

Theorem

There exists a (1—%)_1—competitive randomized online algorithm

for ski rental.
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Randomized algorithm

Randomized algorithm :
Choose a probability distribution p on N and stop at time / with
probability p;.
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Randomized algorithm

Randomized algorithm :

Choose a probability distribution p on N and stop at time / with
probability p;.

< A randomized algorithm is a superposition of (a possibly infinite
number of ) deterministic algorithm (.A; = buy ski at time 7).
(mixed strategy)

Dominated strategy :
A deterministic strategy S1 is dominated by S, if for every
possible choice of t by the adversary, the cost(S1)>cost(S2).

Theorem

No dominated strategy has a positive probability in an optimal
mixed strategy.
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Game theory perspective

® For every i > B, A; has probability 0 in an opt. strategy.
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Ay 1 2 3 B+3
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Game theory perspective

® For every i > B, A; has probability 0 in an opt. strategy.
Take B =4

Cost of the strategies depending on the ending time

Str. / Stop | 1 2 3 4
Ay B| B B B
As 1|B+1|B+1|B+1
As 1] 2 |B+2]|B+2
As 1] 2 3 | B+3

Imagine that the opponent decide to stop at step 1. Then the
optimal cost is 1 and the expected cost of the strategy is

Bp1 + p2 + p3 + pa.

Similarly, if he decides to stop at step 2. The optimal cost is 2 and
the expected cost of the strategy is Bp; + (B + 1)p2 + 2p3 + 2pa.
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LP formulation

min x
Bp1 + p2+ p3 + pa

1
5(Bp1+ (B +1)p2 +2p3 +2p4)

1
§(Bp1 +(B+1)p2 + (B +2)p3 + 3pa)

1
2(Bp1+ (B+1)p2+ (B +2)ps + (B +3)pa)
pr+p2+p3+ ps

Best solution : 1/(1 —$)* — (1 —1)~L.

IN

IN

IN

IN
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Randomized lower bounds - Yao's lemma

Why is it complicated ?
Hard to find lower bounds : we have to find a strategy for
Opponent for every mixed strategy (and there are infinitely many...).
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Randomized lower bounds - Yao's lemma

Why is it complicated ?
Hard to find lower bounds : we have to find a strategy for
Opponent fOI’ eVery m|Xed strategy (and there are infinitely many...).

Idea : Reverse the problem (via LP duality)

Yao's Lemma

Assume that there is a distribution D over instances of [1 such
that every deterministic online algorithm has expected competi-
tive ratio at least . Then, the competitive ratio of every rando-
mized online algorithm for I is at least .
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What about adaptive adversaries ?

J You'll continue skiing until you decide to buy your skis !

— We cannot improve the 2-competitive factor.
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Online matching
MOdEl . Vert|ces arrive one by ONE (with their edges to already appeared vertices).

Matching : Subset of edges pairwise endpoint disjoint.
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(Take an edge whenever it is possible)

Proof :
® The endpoints of the returned matching M is a vertex cover.
® By weak duality, 2|M| = VC > min VC > OPT(M).
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Online matching

MOdel . Vert|ces arrive one by ONE (with their edges to already appeared vertices).

Matching : Subset of edges pairwise endpoint disjoint.

Theorem

The Greedy Algorithm is %—competitive.

(Take an edge whenever it is possible)

Proof :
® The endpoints of the returned matching M is a vertex cover.
® By weak duality, 2|M| = VC > min VC > OPT(M).

Theorem : No deterministic algorithm is a-competitive for o > %

4 T 4 T

fg ] [ 2 T2

17/27



Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

18/27



Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)

18/27



Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)

18/27



Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)

(Equivalently : Give weight 1 to r; and % to its neighbors)

18/27



Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)

(Equivalently : Give weight 1 to r; and % to its neighbors)

18/27



Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)

(Equivalently : Give weight 1 to r; and % to its neighbors)

18/27



Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)

(Equivalently : Give weight 1 to r; and % to its neighbors)

18/27



Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)
(Equivalently : Give weight 1 to r; and % to its neighbors)

2/n
2/n
2/n
2/n

2/n

18/27



Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)
(Equivalently : Give weight 1 to r; and % to its neighbors)

4/n
4/n
4/n
4/n
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Waterfilling algorithm

What went wrong ?
We assign weight without distinction between neighbors.
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Waterfilling algorithm
What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

X
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Waterfilling algorithm

What went wrong ?
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Waterfilling algorithm :
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Waterfilling algorithm

What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

N

1
3

Mathematically :
L4 d(l) = Z(i,j)eE Xij. (Initial level of water on £;)
® Find ¢; = min;epy d(i) + ri such that > 7 r =1 it g <.
(Final level of water)

® Update x;j : increase it by £; — d(i) = rj (eroifneg).
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Primal-dual analysis

20/27



Primal-dual analysis

Fractional matching :

(iy)eE
soumis a
Y oxj<1 Viel
i/(ig)<E
Y xj<1 VjeR
i/(ij)EE

X,'J'S]. V(I,])EE
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Primal-dual analysis

Fractional matching : Fractional Vertex Cover
max Z Xjj minzai'i-ﬂj
(i,j)e.E \ soumis a
soumis a . ai+ 5 >1 v(i,j) € E
Z xj < 1 Viel ai,B; >0 Vi, j
Z xj<1 VjeR
i/(ij)eE

X,'J'S]. V(I,j)EE
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Primal-dual analysis

Fractional matching : Fractional Vertex Cover
max Z Xij minZa;—i—BJ
(iJ)E_E . soumis a
soumis a ..
b . ai+B;>1  V(i,j)eE
Z X,'jg]. Viel a-ﬁ->0 VI_]
i/(id)EE v ’
Y xj<1 VjeR
i/(ij)EE

xj <1 v(i,j) € E
Idea :

® Start with a solution where Xij = 0 (with no constraint since G = 0).
® Update sol. by increasing x;; and increasing «; / creating f3;.
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Primal-dual analysis

Fractional matching : Fractional Vertex Cover
max Z Xjj minzai‘i"ﬁj
(i)eE soumis a
soumis 2 . ai+B;>1  V(i,j)eE
Z x; <1 Viel ai, ;>0 Yij
Y x<1 VieR
i/(iJ)eE

xj <1 v(i,j) € E
Idea :
® Start with a solution where xjj = 0 (with no constraint since G = ).
® Update sol. by increasing x;; and increasing «; / creating f3;.
Each time a vertex is added, we update :
a; = g(d(i))
{ B =1-g(l()) where g(y) = =7
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Analysis (cont.)
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Analysis (cont.)

{ a; = g(d(i))
Bj=1-g(l(j))

Observation 1 : For every i,j € E, aj + 3 > 1.
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Analysis (cont.)

{ a; = g(d(i))
Bj=1-g(l(j))

Observation 1 : For every i,j € E, aj + 3 > 1.
Proof :

® The level of water d(i) increases with time and g is increasing.
® /(j) is fixed forever and £(j) > d(i) at step J.
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Observation 1 : For every i,j € E, aj + 3 > 1.
Proof :

® The level of water d(i) increases with time and g is increasing.
® /(j) is fixed forever and £(j) > d(i) at step j.

Key lemma

efIZx,-sza;JrZﬁj
iJ i j

e

By Weak Duality theorem, it provides a .=
algorithm.

-approximation
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Analysis (cont. 2)

How can we prove such a thing?

eilzxijzzai—FZBj
iJj i J
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Analysis (cont. 2)

How can we prove such a thing?

eilzxijzzai—i—z:@'
i i J

Idea (oversimplified) :
What increases in the primal :

C = Z ri = Z gj—d(i)

ieN()) ieN(j)

What increases in the dual :

® 3i=1—g(l())). Related to the integral of 1 — g (x C).

® Each a; in N(j) by g(£(j)) — g(d(i)). Rel. to integral of g’ (xC).
= g is the function satisfying 1 — g + g’ = ;55.
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Summary

Theorem

The Waterfilling Algorithm is a deterministic algorithm for frac-
tional matching of competitive ratio _*5.
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Summary

Theorem

The Waterfilling Algorithm is a deterministic algorithm for frac-

. : .. e
tional matching of competitive ratio _=5.

Remark : No deterministic algorithm can beat this ratio.
Proof :

Half graph = Edges /;, rj for every j > i.

No deterministic algorithm can behave
well against all the permutations of the
RHS of the half graph.
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Randomized Online Bipartite Matching

Model : Vertices of L are there from the beginning (offline
vertices).
Vertices of R arrive one after another (online vertices).

Reminder : No deterministic algorithm can beats competitive
ratio %
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Randomized algorithm

Theorem (Karp, Vazirani, Vazirani 90, Goel, Mehta'08)

There exists a (1 — 1)-competitive randomized algorithm for on-

line bipartite matching.
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Randomized algorithm

Theorem (Karp, Vazirani, Vazirani 90, Goel, Mehta'08)

There exists a (1 — 1)-competitive randomized algorithm for on-
line bipartite matching.

Algorithm RANKING

Choose a random ordering o of A.

When a vertex of B arrives, match it with its largest (in o)
available neighbor in A.

Two proofs :
® Primal dual approach (Devanur, Jain, Kleinberg '13)
e With a “typical” probabilistic argument K\\/'90, GM'08
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Primal dual approach

For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Y; in [0, 1].
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Primal dual approach

For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Y; in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm” .

(Very sketchy) flavour of the proof :

® We will define some (randomized) «;, 5; when (i, j) are
matched.

a; = 57 h(Y;) and B = 57 (1 — h(Y})).
If (7,j) is added in M then the dual increases by _%;.
® Key Lemma : For every (i,j) € E, E(a; + ;) > 1.

® = |n expectation the constraints of the dual are satisfied.

Follows from properties of h(y) = e’ close to the ones of the

previous proof.
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Conclusion

Thanks for your attention!
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