Online algorithms for dummies

Nicolas Bousquet

Journées CALAMAR
(Journées Combinatoires des Alpes, des Littoraux Atlantique et Méditéranéen, d'Auvergne et du Rhéne)

January 2024

1/27

Today : online algorithms

® Talk 1 : Introduction to online algorithms - Nicolas Bousquet
(LIRIS).

e Talk 2 : Online algorithms with predictions - Bertrand Simon
(IN2P3).

® Talk 3 : Online edge coloring - Clément Legrand-Duchesne
(LaBRI).

2/27

What is an online algorithm ?

® Input arrives sequentially over time (arrival
order).

® Decisions must be taken without the
knowledge of the future input.

® Decisions are irrevocable.

3/27

lllustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

4/27

lllustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

4/27

lllustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

R

4/27

lllustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

4/27

lllustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

1

4/27

lllustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible

i

4/27

lllustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible

. /{lﬁ

— This algorithm may output a (A + 1) coloring. (while there exists a

2-coloring)

4/27

lllustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible

. /{lw

— ThlS algorithm may OUtpUt a (A =+].) Coloring. (while there exists a

2-coloring)

Typical question : Can we find an algorithm that “approximates”
the quality of the best offline algorithm ?

4/27

Types of adversaries

e.g. “a graph”, “a planar graph”, “an interval graph”

% You shall choose an instance of that type.

5/27

Types of adversaries

e.g. “a graph”, “a planar graph”, “an interval graph”

% You shall choose an instance of that type.

This will be my (deterministic / randomized) algorithm. "?;ys

5/27

Types of adversaries

You shall choose an instance of that type.

%‘T e e
/& e.g. “a graph”, “a planar graph”, “an interval graph
This will be my (deterministic / randomized) algorithm. "@;@

Héhéhé! | send you the worst possible instance (and or-
dering) ! | am evil !

5/27

Types of adversaries

%‘ You shall choose an instance of that type.
/&T e.g. “a graph”, “a planar graph”, “an interval graph”
oY)
This will be my (deterministic / randomized) algorithm. ‘i??

Héhéhé! | send you the worst possible instance (and or-
Cg% dering)! | am evil !

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

5/27

Types of adversaries

< You shall choose an instance of that type.
/&T e.g. “a graph”, “a planar graph”, “an interval graph”
ey
This will be my (deterministic / randomized) algorithm. %\3

Héhéhé! | will send you the worst possible 1st vertex of
an instance and I'll see next... | am super evil !

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

5/27

Types of adversaries

%,‘ You shall choose an instance of that type.
/&T e.g. “a graph”, “a planar graph”, “an interval graph”
)
This will be my (deterministic / randomized) algorithm. %\3

Héhéhé! | will send you the worst possible 1st vertex of
an instance and I'll see next... | am super evil !

This is my decision for the 1st vertex. "%\3

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

5/27

Types of adversaries

%,‘ You shall choose an instance of that type.
/&T e.g. “a graph”, “a planar graph”, “an interval graph”
)
This will be my (deterministic / randomized) algorithm. %\3

Héhéhé! Now, | will send you the worst possible 2nd
vertex of an instance and I'll see next... | am super evil !

This is my decision for the 1st vertex. "%\3

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

5/27

Types of adversaries

< You shall choose an instance of that type.
/&T e.g. “a graph”, “a planar graph”, “an interval graph”
ey
This will be my (deterministic / randomized) algorithm. %\3

Héhéhé! Now, | will send you the worst possible 2nd
vertex of an instance and I'll see next... | am super evil !

This is my decision for the 2nd vertex. '%\3

3

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

5/27

Types of adversaries

{ You shall choose an instance of that type.
,&T e.g. “a graph”, “a planar graph”, “an interval graph”
)
This will be my (deterministic / randomized) algorithm. “a’n‘e

Héhéhé! Now, | will send you the worst possible 2nd
C¥¥ vertex of an instance and I'll see next... | am super evil !

This is my decision for the 2nd vertex. “%b‘l’e

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

Adaptive adversary. Knows the algorithm and all the choices
performed so far and chooses the next action. (stronger adversary)

Two levels of such adversaries

5/27

Deterministic vs randomized

Two types of online algorithms : deterministic or randomized !

6/27

Deterministic vs randomized

Two types of online algorithms : deterministic or randomized !

Remark :
Oblivious and adaptive adversaries are equivalent for deterministic
algorithms.

6/27

Performance of online algorithms

Performace of an online algorithm Given a maximization
problem, / an instance, an algorithm is :

® a-competitive the algorithm outputs a solution of (expected)
size > - OPT(I) + ¢ where OPT(I) denotes the size of the
optimal solution.

7/27

Performance of online algorithms

Performace of an online algorithm Given a maximization
problem, / an instance, an algorithm is :
® a-competitive the algorithm outputs a solution of (expected)
size > - OPT(I) + ¢ where OPT(I) denotes the size of the
optimal solution.
® q-strictly competitive the algorithm outputs a solution of
(expected) size > a- OPT (/) where OPT (/) denotes the size
of the optimal solution.

7/27

Performance of online algorithms

Performace of an online algorithm Given a maximization
problem, / an instance, an algorithm is :

® a-competitive the algorithm outputs a solution of (expected)
size > - OPT(I) + ¢ where OPT(I) denotes the size of the
optimal solution.

® q-strictly competitive the algorithm outputs a solution of
(expected) size > a- OPT (/) where OPT (/) denotes the size
of the optimal solution.

Remark :
e o <1andif a =1 we have an almost optimal algorithm.
® For a minimization function we can twist the definition

® For a deterministic algorithm, we are just looking for the worst
instance. For randomized algorithms, we look for the worst
possible expected size.

7/27

Ski rental

We go to a ski station x days where x is unknown.
Each day, one can either :
e Buy a pair of skis for B euros (forever) or,

8/27

Ski rental

We go to a ski station x days where x is unknown.
Each day, one can either :

e Buy a pair of skis for B euros (forever) or,

e Rent a pair of skis for 1 euro per day.

8/27

Ski rental

We go to a ski station x days where x is unknown.
Each day, one can either :

e Buy a pair of skis for B euros (forever) or,

e Rent a pair of skis for 1 euro per day.

e Each day, if we haven't yet bought a pair of ski,
we can buy a pair.

8/27

Ski rental
We go to a ski station x days where x is unknown.
Each day, one can either :
e Buy a pair of skis for B euros (forever) or,
e Rent a pair of skis for 1 euro per day.
e Each day, if we haven’t yet bought a pair of ski,
we can buy a pair.
‘%\3 Buy a pair of ski or not.

3

t& Decide when the ski trip is over.

8/27

Ski rental

We go to a ski station x days where x is unknown.
Each day, one can either :

e Buy a pair of skis for B euros (forever) or,

e Rent a pair of skis for 1 euro per day.

e Each day, if we haven’t yet bought a pair of ski,
we can buy a pair.

'%\3 Buy a pair of ski or not.

3

eﬁ Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.

8/27

Ski rental

We go to a ski station x days where x is unknown.
Each day, one can either :

e Buy a pair of skis for B euros (forever) or,

e Rent a pair of skis for 1 euro per day.

e Each day, if we haven't yet bought a pair of ski,
we can buy a pair.

wpd X .
%\3 Buy a pair of ski or not.

3

e£ Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.
Opponent strategy : Stop immediately after day 1.

8/27

Ski rental

We go to a ski station x days where x is unknown.
Each day, one can either :

e Buy a pair of skis for B euros (forever) or,

e Rent a pair of skis for 1 euro per day.

e Each day, if we haven't yet bought a pair of ski,
we can buy a pair.

o . .
%\3 Buy a pair of ski or not.

3

eﬁ Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.
Opponent strategy : Stop immediately after day 1.
Competitive ratio :

|

. — Bad when B is large...

8/27

Ski rental

We go to a ski station x days where x is unknown.
Each day, one can either :

e Buy a pair of skis for B euros (forever) or,

e Rent a pair of skis for 1 euro per day.

e Each day, if we haven't yet bought a pair of ski,
we can buy a pair.

"%m‘h? Buy a pair of ski or not.
Qt’ Decide when the ski trip is over.
Algorithm 1 : Buy a pair immediately.

Opponent strategy : Stop immediately after day 1.
Competitive ratio :

|

. — Bad when B is large...

Algorithm 2 : Always rent a pair of ski.

8/27

Ski rental

We go to a ski station x days where x is unknown.
Each day, one can either :

e Buy a pair of skis for B euros (forever) or,

e Rent a pair of skis for 1 euro per day.

e Each day, if we haven't yet bought a pair of ski,
we can buy a pair.

2 5 Buy a pair of ski or not.

e yap

tg Decide when the ski trip is over.
Algorithm 1 : Buy a pair immediately.

Opponent strategy : Stop immediately after day 1.
Competitive ratio :

|

. — Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
Opponent strategy : Decide to stay at the ski station forever.

8/27

Ski rental

We go to a ski station x days where x is unknown.
Each day, one can either :

e Buy a pair of skis for B euros (forever) or,

e Rent a pair of skis for 1 euro per day.

e Each day, if we haven't yet bought a pair of ski,
we can buy a pair.

2 5 Buy a pair of ski or not.

e yap

tg Decide when the ski trip is over.
Algorithm 1 : Buy a pair immediately.

Opponent strategy : Stop immediately after day 1.
Competitive ratio :

|

. — Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
Opponent strategy : Decide to stay at the ski station forever.
Competitive ratio : g — +0o when n tends to infinity.

8/27

Compromise - Break-even algorithm

® The first B — 1 days, we rent skis.
® The B-th day, we buy the skis.

9/27

Compromise - Break-even algorithm

® The first B — 1 days, we rent skis.
® The B-th day, we buy the skis.

Theorem

The break-even algorithm is (2 — %)-competitive]

9/27

Compromise - Break-even algorithm

® The first B — 1 days, we rent skis.
® The B-th day, we buy the skis.

Theorem

The break-even algorithm is (2 — %)-competitive]

Proof : Let k the integer where the opponent decide to stop.

e If k < B —1, the optimal strategy consists in renting and
that's what we do.

e If k > B, the optimal strategy (of cost B) consists in buying
skis at day 1. The break-even strategy has cost 28 — 1.

9/27

Optimality of the algorithm

Theorem

No deterministic online algorithm has a competitive ration better
than (2 — %).

10/27

Optimality of the algorithm

Theorem

No deterministic online algorithm has a competitive ration better
than (2 — %).

Proof :
® Determinist strategy : choose an integer t.
e Opponent strategy : either choose t' < t or t/ = t.

® Make calculations...

10/27

Randomization helps

Model :
"%S Choose a randomized algorithm.

Opponent chooses a date (fixed forever) knowing the random choices

we will make but not their output (oblivious adversary)

11/27

Randomization helps

wpo . .
%ﬂe Choose a randomized algorithm.
Opponent ChOOSGS a date (flxed forever) knowing the random choices

we will make but not their output (oblivious adversary)

Theorem

There exists a (1—%)_1—competitive randomized online algorithm

for ski rental.

11/27

Randomized algorithm

Randomized algorithm :
Choose a probability distribution p on N and stop at time / with
probability p;.

12/27

Randomized algorithm

Randomized algorithm :

Choose a probability distribution p on N and stop at time / with
probability p;.

< A randomized algorithm is a superposition of (a possibly infinite
number of) deterministic algorithm (.A; = buy ski at time 7).
(mixed strategy)

12/27

Randomized algorithm

Randomized algorithm :

Choose a probability distribution p on N and stop at time / with
probability p;.

< A randomized algorithm is a superposition of (a possibly infinite
number of) deterministic algorithm (.A; = buy ski at time 7).
(mixed strategy)

Dominated strategy :
A deterministic strategy S1 is dominated by S, if for every
possible choice of t by the adversary, the cost(S1)>cost(S»).

12/27

Randomized algorithm

Randomized algorithm :

Choose a probability distribution p on N and stop at time / with
probability p;.

< A randomized algorithm is a superposition of (a possibly infinite
number of) deterministic algorithm (.A; = buy ski at time 7).
(mixed strategy)

Dominated strategy :
A deterministic strategy S1 is dominated by S, if for every
possible choice of t by the adversary, the cost(S1)>cost(S2).

Theorem

No dominated strategy has a positive probability in an optimal
mixed strategy.

12/27

Game theory perspective

® For every i > B, A; has probability 0 in an opt. strategy.

13/27

Game theory perspective

® For every i > B, A; has probability 0 in an opt. strategy.

Take B=4
Cost of the strategies depending on the ending time
Str. / Stop | 1 2 3 4
Aq B| B B B
Aa 1| B+1|B+1 | B+1
A3 1 2 B+2 | B42
Ay 1 2 3 B+3

13/27

® For every i > B, A; has probability 0 in an opt. strategy.

Game theory perspective

Take B=4
Cost of the strategies depending on the ending time
Str. / Stop | 1 2 3 4
Aq B| B B B
Aa 1| B+1|B+1 | B+1
A3 1 2 B+2 | B42
Ay 1 2 3 B+3

Imagine that the opponent decide to stop at step 1. Then the
optimal cost is 1 and the expected cost of the strategy is

Bp1 + p2 + p3 + pa.

13/27

Game theory perspective

® For every i > B, A; has probability 0 in an opt. strategy.
Take B =4

Cost of the strategies depending on the ending time

Str. / Stop | 1 2 3 4
Ay B| B B B
As 1|B+1|B+1|B+1
As 1] 2 |B+2]|B+2
As 1] 2 3 | B+3

Imagine that the opponent decide to stop at step 1. Then the
optimal cost is 1 and the expected cost of the strategy is

Bp1 + p2 + p3 + pa.

Similarly, if he decides to stop at step 2. The optimal cost is 2 and
the expected cost of the strategy is Bp; + (B + 1)p2 + 2p3 + 2pa.

13/27

LP formulation

min x
Bp1 + p2+ p3 + pa

1
5(Bp1+ (B +1)p2 +2p3 +2p4)

1
§(Bp1 +(B+1)p2 + (B +2)p3 + 3pa)

1
2(Bp1+ (B+1)p2+ (B +2)ps + (B +3)pa)
pr+p2+p3+ ps

Best solution : 1/(1 —$)* — (1 —1)~L.

IN

IN

IN

IN

14/27

Randomized lower bounds - Yao's lemma

Why is it complicated ?
Hard to find lower bounds : we have to find a strategy for
Opponent for every mixed strategy (and there are infinitely many...).

15/27

Randomized lower bounds - Yao's lemma

Why is it complicated ?
Hard to find lower bounds : we have to find a strategy for
Opponent for every mixed Strategy (and there are infinitely many...).

Idea : Reverse the problem (via LP duality)

15/27

Randomized lower bounds - Yao's lemma

Why is it complicated ?
Hard to find lower bounds : we have to find a strategy for
Opponent fOI’ eVery m|Xed strategy (and there are infinitely many...).

Idea : Reverse the problem (via LP duality)

Yao's Lemma

Assume that there is a distribution D over instances of [1 such
that every deterministic online algorithm has expected competi-
tive ratio at least . Then, the competitive ratio of every rando-
mized online algorithm for I is at least .

15/27

What about adaptive adversaries ?

J You'll continue skiing until you decide to buy your skis !

— We cannot improve the 2-competitive factor.

16/27

Online matching
MOdEl . Vert|ces arrive one by ONE (with their edges to already appeared vertices).

Matching : Subset of edges pairwise endpoint disjoint.

17/27

Online matching
MOdEl . Vel’tlces arrive one by ONE (with their edges to already appeared vertices).

Matching : Subset of edges pairwise endpoint disjoint.

Theorem

The Greedy Algorithm is %—competitive.

(Take an edge whenever it is possible)

Proof :
® The endpoints of the returned matching M is a vertex cover.
® By weak duality, 2|M| = VC > min VC > OPT(M).

17/27

Online matching

MOdel . Vel’tlces arrive one by ONE (with their edges to already appeared vertices).

Matching : Subset of edges pairwise endpoint disjoint.

Theorem

The Greedy Algorithm is %—competitive.

(Take an edge whenever it is possible)

Proof :
® The endpoints of the returned matching M is a vertex cover.
® By weak duality, 2|M| = VC > min VC > OPT(M).

Theorem : No deterministic algorithm is a-competitive for o > %

17/27

Online matching

MOdel . Vert|ces arrive one by ONE (with their edges to already appeared vertices).

Matching : Subset of edges pairwise endpoint disjoint.

Theorem

The Greedy Algorithm is %—competitive.

(Take an edge whenever it is possible)

Proof :
® The endpoints of the returned matching M is a vertex cover.
® By weak duality, 2|M| = VC > min VC > OPT(M).

Theorem : No deterministic algorithm is a-competitive for o > %

4 T 4 T

fg] [2 T2

17/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)

(Equivalently : Give weight 1 to r; and % to its neighbors)

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)

(Equivalently : Give weight 1 to r; and % to its neighbors)

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)

(Equivalently : Give weight 1 to r; and % to its neighbors)

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)

(Equivalently : Give weight 1 to r; and % to its neighbors)

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)
(Equivalently : Give weight 1 to r; and % to its neighbors)

2/n
2/n
2/n
2/n

2/n

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

® Give weight to edges.
® Constraint : for every node, the sum of the weights of the
edges incident to it is at most 1. (if weights are {0, 1} = Matching)
Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if r; has degree d, give weight % to every edge incident to it, when possible)
(Equivalently : Give weight 1 to r; and % to its neighbors)

4/n
4/n
4/n
4/n

2/n

18/27

Waterfilling algorithm

What went wrong ?
We assign weight without distinction between neighbors.

19/27

Waterfilling algorithm

What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

19/27

Waterfilling algorithm

What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

19/27

Waterfilling algorithm

What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

19/27

Waterfilling algorithm

What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

i@

ol

19/27

Waterfilling algorithm

What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

i@

ol

19/27

Waterfilling algorithm
What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

X
%.\\\

% :§o

19/27

Waterfilling algorithm

What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

N

1
3

19/27

Waterfilling algorithm

What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

N

1
3

Mathematically :
L4 d(l) = Z(i,j)eE Xij. (Initial level of water on £;)
® Find ¢; = min;epy d(i) + ri such that > 7 r =1 it g <.
(Final level of water)

® Update x;j : increase it by £; — d(i) = rj (eroifneg).
19/27

Primal-dual analysis

20/27

Primal-dual analysis

Fractional matching :

(iy)eE
soumis a
Y oxj<1 Viel
i/(ig)<E
Y xj<1 VjeR
i/(ij)EE

X,'J'S]. V(I,])EE

20/27

Primal-dual analysis

Fractional matching : Fractional Vertex Cover
max Z Xjj minzai'i-ﬂj
(i,j)e.E \ soumis a
soumis a . ai+ 5 >1 v(i,j) € E
Z xj < 1 Viel ai,B; >0 Vi, j
Z xj<1 VjeR
i/(ij)eE

X,'J'S]. V(I,j)EE

20/27

Primal-dual analysis

Fractional matching : Fractional Vertex Cover
max Z Xij minZa;—i—BJ
(iJ)E_E . soumis a
soumis a ..
b . ai+B;>1 V(i,j)eE
Z X,'jg]. Viel a-ﬁ->0 VI_]
i/(id)EE v ’
Y xj<1 VjeR
i/(ij)EE

xj <1 v(i,j) € E
Idea :

® Start with a solution where Xij = 0 (with no constraint since G = 0).
® Update sol. by increasing x;; and increasing «; / creating f3;.

20/27

Primal-dual analysis

Fractional matching : Fractional Vertex Cover
max Z Xjj minzai‘i"ﬁj
(i)eE soumis a
soumis 2 . ai+B;>1 V(i,j)eE
Z x; <1 Viel ai, ;>0 Yij
Y x<1 VieR
i/(iJ)eE

xj <1 v(i,j) € E
Idea :
® Start with a solution where xjj = 0 (with no constraint since G =).
® Update sol. by increasing x;; and increasing «; / creating f3;.
Each time a vertex is added, we update :
a; = g(d(i))
{ B =1-g(l()) where g(y) = =7

20/27

Analysis (cont.)

21/27

Analysis (cont.)

{ a; = g(d(i))
Bj=1-g(l(j))

Observation 1 : For every i,j € E, aj + 3 > 1.

21/27

Analysis (cont.)

{ a; = g(d(i))
Bj=1-g(l(j))

Observation 1 : For every i,j € E, aj + 3 > 1.
Proof :

® The level of water d(i) increases with time and g is increasing.
® /(j) is fixed forever and £(j) > d(i) at step J.

21/27

Analysis (cont.)
{ aj = g(d(/))
B =1-g(t0))

Observation 1 : For every i,j € E, aj + 3 > 1.
Proof :

® The level of water d(i) increases with time and g is increasing.
® /(j) is fixed forever and £(j) > d(i) at step j.

Key lemma

efIZx,-sza;JrZﬁj
ij i J

21/27

Analysis (cont.)
{ aj = g(d(i))
B =1-g(t0))

Observation 1 : For every i,j € E, aj + 3 > 1.
Proof :

® The level of water d(i) increases with time and g is increasing.
® /(j) is fixed forever and £(j) > d(i) at step j.

Key lemma

efIZx,-sza;JrZﬁj
iJ i j

e

By Weak Duality theorem, it provides a .=
algorithm.

-approximation

21/27

Analysis (cont. 2)

How can we prove such a thing?

eilzxijzzai—FZBj
iJj i J

22/27

Analysis (cont. 2)

How can we prove such a thing?

D TED BRI
iJ i J

Idea (oversimplified) :
What increases in the primal :

C = Z ri = Z Ej—d(i)

ieN(j) ieN())

22/27

Analysis (cont. 2)

How can we prove such a thing?

D TED BRI
J ! J

Idea (oversimplified) :
What increases in the primal :

C = Z ri = Z Ej—d(i)

ieN(j) ieN(j)

What increases in the dual :
* Bj=1-g(¢())).
® Each «; in N(j) / by g(£(j)) — g(d(i)).

22/27

Analysis (cont. 2)

How can we prove such a thing?

D TED BRI
J ! J

Idea (oversimplified) :
What increases in the primal :

C = Z ri = Z Ej—d(i)

ieN(j) ieN(j)

What increases in the dual :
* Bj=1-g(£()))-
® Each «; in N(_]) by g(f(_/)) —g(d(l)) Rel. to integral of g’ (x C).

22/27

Analysis (cont. 2)

How can we prove such a thing?

D TED BRI
J ! J

Idea (oversimplified) :
What increases in the primal :

C = Z ri = Z Ej—d(i)

ieN()) ieN(j)

What increases in the dual :
L /BJ =1- g(f(_])) Related to the integral of 1 — g (xC).
® Each «; in N(_]) by g(f(_/)) —g(d(l)) Rel. to integral of g’ (x C).

22/27

Analysis (cont. 2)

How can we prove such a thing?

eilzxijzzai—i—z:@'
i i J

Idea (oversimplified) :
What increases in the primal :

C = Z ri = Z gj—d(i)

ieN()) ieN(j)

What increases in the dual :

® 3i=1—g(l())). Related to the integral of 1 — g (x C).

® Each a; in N(j) by g(£(j)) — g(d(i)). Rel. to integral of g’ (xC).
= g is the function satisfying 1 — g + g’ = ;55.

22/27

Summary

Theorem

The Waterfilling Algorithm is a deterministic algorithm for frac-
tional matching of competitive ratio _*5.

23/27

Summary

Theorem

The Waterfilling Algorithm is a deterministic algorithm for frac-
tional matching of competitive ratio _*5.

Remark : No deterministic algorithm can beat this ratio.

23/27

Summary

Theorem

The Waterfilling Algorithm is a deterministic algorithm for frac-
tional matching of competitive ratio

€]
e—1-

Remark : No deterministic algorithm can beat this ratio.

Proof :
Half graph = Edges /;, rj for every j > i.

23/27

Summary

Theorem

The Waterfilling Algorithm is a deterministic algorithm for frac-

. : .. e
tional matching of competitive ratio _=5.

Remark : No deterministic algorithm can beat this ratio.
Proof :

Half graph = Edges /;, rj for every j > i.

No deterministic algorithm can behave
well against all the permutations of the
RHS of the half graph.

23/27

Randomized Online Bipartite Matching

Model : Vertices of L are there from the beginning (offline
vertices).
Vertices of R arrive one after another (online vertices).

Reminder : No deterministic algorithm can beats competitive
ratio %

24/27

Randomized algorithm

Theorem (Karp, Vazirani, Vazirani 90, Goel, Mehta'08)

There exists a (1 — 1)-competitive randomized algorithm for on-

line bipartite matching.

25/27

Randomized algorithm

Theorem (Karp, Vazirani, Vazirani 90, Goel, Mehta'08)

There exists a (1 — 1)-competitive randomized algorithm for on-
line bipartite matching.

Algorithm RANKING

Choose a random ordering o of A.

When a vertex of B arrives, match it with its largest (in o)
available neighbor in A.

25/27

Randomized algorithm

Theorem (Karp, Vazirani, Vazirani 90, Goel, Mehta'08)

There exists a (1 — 1)-competitive randomized algorithm for on-
line bipartite matching.

Algorithm RANKING

Choose a random ordering o of A.

When a vertex of B arrives, match it with its largest (in o)
available neighbor in A.

Two proofs :
® Primal dual approach (Devanur, Jain, Kleinberg '13)
e With a “typical” probabilistic argument K\\/'90, GM'08

25/27

Primal dual approach

For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Y; in [0, 1].

26/27

Primal dual approach
For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Y; in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm” .

26/27

Primal dual approach

For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Y; in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm” .

(Very sketchy) flavour of the proof :

® We will define some (randomized) «;, 5; when (i, j) are
matched.

o a; = g2h(Y) and 6, = 2£1(1— h(Y)))
® If (i,j) is added in M then the dual increases by _°5.

26/27

Primal dual approach

For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Y; in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm” .

(Very sketchy) flavour of the proof :

® We will define some (randomized) «;, 5; when (i, j) are
matched.

* a; = 25h(Yi) and B; = 55(1 — h(Y7)).
® If (i,j) is added in M then the dual increases by _°5.
® Key Lemma : For every (i,j) € E, E(a; + ;) > 1.

26/27

Primal dual approach

For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Y; in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm” .

(Very sketchy) flavour of the proof :

® We will define some (randomized) «;, 5; when (i, j) are
matched.

a; = 251h(Y;) and B = 2£5(1 - h(Y})).

If (7,j) is added in M then the dual increases by _%;.

® Key Lemma : For every (i,j) € E, E(a; + ;) > 1.

® = |n expectation the constraints of the dual are satisfied.

26/27

Primal dual approach

For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Y; in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm” .

(Very sketchy) flavour of the proof :

® We will define some (randomized) «;, 5; when (i, j) are
matched.

a; = 251h(Y;) and B = 2£5(1 - h(Y})).

If (7,j) is added in M then the dual increases by _%;.

® Key Lemma : For every (i,j) € E, E(a; + ;) > 1.

® = |n expectation the constraints of the dual are satisfied.

26/27

Primal dual approach

For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Y; in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm” .

(Very sketchy) flavour of the proof :

® We will define some (randomized) «;, 5; when (i, j) are
matched.

a; = 57 h(Y;) and B = 57 (1 — h(Y})).
If (7,j) is added in M then the dual increases by _%;.
® Key Lemma : For every (i,j) € E, E(a; + ;) > 1.

® = |n expectation the constraints of the dual are satisfied.

Follows from properties of h(y) = e’ close to the ones of the

previous proof.
26/27

Conclusion

Thanks for your attention!

27/27

