
Online algorithms for dummies

Nicolas Bousquet

Journées CALAMAR
(Journées Combinatoires des Alpes, des Littoraux Atlantique et Méditéranéen, d’Auvergne et du Rhône)

January 2024

1/27

Today : online algorithms

• Talk 1 : Introduction to online algorithms - Nicolas Bousquet
(LIRIS).

• Talk 2 : Online algorithms with predictions - Bertrand Simon
(IN2P3).

• Talk 3 : Online edge coloring - Clément Legrand-Duchesne
(LaBRI).

2/27

What is an online algorithm ?

• Input arrives sequentially over time (arrival
order).

• Decisions must be taken without the
knowledge of the future input.

• Decisions are irrevocable.

3/27

Illustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

→ This algorithm may output a (∆ + 1) coloring. (while there exists a

2-coloring)

Typical question : Can we find an algorithm that “approximates”
the quality of the best offline algorithm ?

4/27

Illustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

→ This algorithm may output a (∆ + 1) coloring. (while there exists a

2-coloring)

Typical question : Can we find an algorithm that “approximates”
the quality of the best offline algorithm ?

4/27

Illustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

→ This algorithm may output a (∆ + 1) coloring. (while there exists a

2-coloring)

Typical question : Can we find an algorithm that “approximates”
the quality of the best offline algorithm ?

4/27

Illustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

→ This algorithm may output a (∆ + 1) coloring. (while there exists a

2-coloring)

Typical question : Can we find an algorithm that “approximates”
the quality of the best offline algorithm ?

4/27

Illustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

→ This algorithm may output a (∆ + 1) coloring. (while there exists a

2-coloring)

Typical question : Can we find an algorithm that “approximates”
the quality of the best offline algorithm ?

4/27

Illustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

→ This algorithm may output a (∆ + 1) coloring. (while there exists a

2-coloring)

Typical question : Can we find an algorithm that “approximates”
the quality of the best offline algorithm ?

4/27

Illustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

→ This algorithm may output a (∆ + 1) coloring. (while there exists a

2-coloring)

Typical question : Can we find an algorithm that “approximates”
the quality of the best offline algorithm ?

4/27

Illustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

→ This algorithm may output a (∆ + 1) coloring. (while there exists a

2-coloring)

Typical question : Can we find an algorithm that “approximates”
the quality of the best offline algorithm ?

4/27

Types of adversaries

You shall choose an instance of that type.
e.g. “a graph”, “a planar graph”, “an interval graph”

This will be my (deterministic / randomized) algorithm.

Héhéhé ! I send you the worst possible instance (and or-
dering) ! I am evil !

This is my decision for the 1st vertex.

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

Adaptive adversary. Knows the algorithm and all the choices
performed so far and chooses the next action. (stronger adversary)

Two levels of such adversaries

5/27

Types of adversaries

You shall choose an instance of that type.
e.g. “a graph”, “a planar graph”, “an interval graph”

This will be my (deterministic / randomized) algorithm.

Héhéhé ! I send you the worst possible instance (and or-
dering) ! I am evil !

This is my decision for the 1st vertex.

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

Adaptive adversary. Knows the algorithm and all the choices
performed so far and chooses the next action. (stronger adversary)

Two levels of such adversaries

5/27

Types of adversaries

You shall choose an instance of that type.
e.g. “a graph”, “a planar graph”, “an interval graph”

This will be my (deterministic / randomized) algorithm.

Héhéhé ! I send you the worst possible instance (and or-
dering) ! I am evil !

This is my decision for the 1st vertex.

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

Adaptive adversary. Knows the algorithm and all the choices
performed so far and chooses the next action. (stronger adversary)

Two levels of such adversaries

5/27

Types of adversaries

You shall choose an instance of that type.
e.g. “a graph”, “a planar graph”, “an interval graph”

This will be my (deterministic / randomized) algorithm.

Héhéhé ! I send you the worst possible instance (and or-
dering) ! I am evil !

This is my decision for the 1st vertex.

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

Adaptive adversary. Knows the algorithm and all the choices
performed so far and chooses the next action. (stronger adversary)

Two levels of such adversaries

5/27

Types of adversaries

You shall choose an instance of that type.
e.g. “a graph”, “a planar graph”, “an interval graph”

This will be my (deterministic / randomized) algorithm.

Héhéhé ! I will send you the worst possible 1st vertex of
an instance and I’ll see next... I am super evil !

This is my decision for the 1st vertex.

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

Adaptive adversary. Knows the algorithm and all the choices
performed so far and chooses the next action. (stronger adversary)

Two levels of such adversaries

5/27

Types of adversaries

You shall choose an instance of that type.
e.g. “a graph”, “a planar graph”, “an interval graph”

This will be my (deterministic / randomized) algorithm.

Héhéhé ! I will send you the worst possible 1st vertex of
an instance and I’ll see next... I am super evil !

This is my decision for the 1st vertex.

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

Adaptive adversary. Knows the algorithm and all the choices
performed so far and chooses the next action. (stronger adversary)

Two levels of such adversaries

5/27

Types of adversaries

You shall choose an instance of that type.
e.g. “a graph”, “a planar graph”, “an interval graph”

This will be my (deterministic / randomized) algorithm.

Héhéhé ! Now, I will send you the worst possible 2nd
vertex of an instance and I’ll see next... I am super evil !

This is my decision for the 1st vertex.

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

Adaptive adversary. Knows the algorithm and all the choices
performed so far and chooses the next action. (stronger adversary)

Two levels of such adversaries

5/27

Types of adversaries

You shall choose an instance of that type.
e.g. “a graph”, “a planar graph”, “an interval graph”

This will be my (deterministic / randomized) algorithm.

Héhéhé ! Now, I will send you the worst possible 2nd
vertex of an instance and I’ll see next... I am super evil !

This is my decision for the 2nd vertex.

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

Adaptive adversary. Knows the algorithm and all the choices
performed so far and chooses the next action. (stronger adversary)

Two levels of such adversaries

5/27

Types of adversaries

You shall choose an instance of that type.
e.g. “a graph”, “a planar graph”, “an interval graph”

This will be my (deterministic / randomized) algorithm.

Héhéhé ! Now, I will send you the worst possible 2nd
vertex of an instance and I’ll see next... I am super evil !

This is my decision for the 2nd vertex.

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

Adaptive adversary. Knows the algorithm and all the choices
performed so far and chooses the next action. (stronger adversary)

Two levels of such adversaries

5/27

Deterministic vs randomized

Two types of online algorithms : deterministic or randomized !

Remark :
Oblivious and adaptive adversaries are equivalent for deterministic
algorithms.

6/27

Deterministic vs randomized

Two types of online algorithms : deterministic or randomized !

Remark :
Oblivious and adaptive adversaries are equivalent for deterministic
algorithms.

6/27

Performance of online algorithms

Performace of an online algorithm Given a maximization
problem, I an instance, an algorithm is :

• α-competitive the algorithm outputs a solution of (expected)
size ≥ α · OPT (I) + c where OPT (I) denotes the size of the
optimal solution.

• α-strictly competitive the algorithm outputs a solution of
(expected) size ≥ α · OPT (I) where OPT (I) denotes the size
of the optimal solution.

Remark :

• α ≤ 1 and if α = 1 we have an almost optimal algorithm.

• For a minimization function we can twist the definition

• For a deterministic algorithm, we are just looking for the worst
instance. For randomized algorithms, we look for the worst
possible expected size.

7/27

Performance of online algorithms

Performace of an online algorithm Given a maximization
problem, I an instance, an algorithm is :

• α-competitive the algorithm outputs a solution of (expected)
size ≥ α · OPT (I) + c where OPT (I) denotes the size of the
optimal solution.

• α-strictly competitive the algorithm outputs a solution of
(expected) size ≥ α · OPT (I) where OPT (I) denotes the size
of the optimal solution.

Remark :

• α ≤ 1 and if α = 1 we have an almost optimal algorithm.

• For a minimization function we can twist the definition

• For a deterministic algorithm, we are just looking for the worst
instance. For randomized algorithms, we look for the worst
possible expected size.

7/27

Performance of online algorithms

Performace of an online algorithm Given a maximization
problem, I an instance, an algorithm is :

• α-competitive the algorithm outputs a solution of (expected)
size ≥ α · OPT (I) + c where OPT (I) denotes the size of the
optimal solution.

• α-strictly competitive the algorithm outputs a solution of
(expected) size ≥ α · OPT (I) where OPT (I) denotes the size
of the optimal solution.

Remark :

• α ≤ 1 and if α = 1 we have an almost optimal algorithm.

• For a minimization function we can twist the definition

• For a deterministic algorithm, we are just looking for the worst
instance. For randomized algorithms, we look for the worst
possible expected size.

7/27

Ski rental
We go to a ski station x days where x is unknown.
Each day, one can either :
• Buy a pair of skis for B euros (forever) or,

• Rent a pair of skis for 1 euro per day.
• Each day, if we haven’t yet bought a pair of ski,
we can buy a pair.

Buy a pair of ski or not.

Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.
Opponent strategy : Stop immediately after day 1.
Competitive ratio : B

1 . → Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
Opponent strategy : Decide to stay at the ski station forever.
Competitive ratio : n

B → +∞ when n tends to infinity.

8/27

Ski rental
We go to a ski station x days where x is unknown.
Each day, one can either :
• Buy a pair of skis for B euros (forever) or,
• Rent a pair of skis for 1 euro per day.

• Each day, if we haven’t yet bought a pair of ski,
we can buy a pair.

Buy a pair of ski or not.

Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.
Opponent strategy : Stop immediately after day 1.
Competitive ratio : B

1 . → Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
Opponent strategy : Decide to stay at the ski station forever.
Competitive ratio : n

B → +∞ when n tends to infinity.

8/27

Ski rental
We go to a ski station x days where x is unknown.
Each day, one can either :
• Buy a pair of skis for B euros (forever) or,
• Rent a pair of skis for 1 euro per day.
• Each day, if we haven’t yet bought a pair of ski,
we can buy a pair.

Buy a pair of ski or not.

Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.
Opponent strategy : Stop immediately after day 1.
Competitive ratio : B

1 . → Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
Opponent strategy : Decide to stay at the ski station forever.
Competitive ratio : n

B → +∞ when n tends to infinity.

8/27

Ski rental
We go to a ski station x days where x is unknown.
Each day, one can either :
• Buy a pair of skis for B euros (forever) or,
• Rent a pair of skis for 1 euro per day.
• Each day, if we haven’t yet bought a pair of ski,
we can buy a pair.

Buy a pair of ski or not.

Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.
Opponent strategy : Stop immediately after day 1.
Competitive ratio : B

1 . → Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
Opponent strategy : Decide to stay at the ski station forever.
Competitive ratio : n

B → +∞ when n tends to infinity.

8/27

Ski rental
We go to a ski station x days where x is unknown.
Each day, one can either :
• Buy a pair of skis for B euros (forever) or,
• Rent a pair of skis for 1 euro per day.
• Each day, if we haven’t yet bought a pair of ski,
we can buy a pair.

Buy a pair of ski or not.

Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.

Opponent strategy : Stop immediately after day 1.
Competitive ratio : B

1 . → Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
Opponent strategy : Decide to stay at the ski station forever.
Competitive ratio : n

B → +∞ when n tends to infinity.

8/27

Ski rental
We go to a ski station x days where x is unknown.
Each day, one can either :
• Buy a pair of skis for B euros (forever) or,
• Rent a pair of skis for 1 euro per day.
• Each day, if we haven’t yet bought a pair of ski,
we can buy a pair.

Buy a pair of ski or not.

Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.
Opponent strategy : Stop immediately after day 1.

Competitive ratio : B
1 . → Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
Opponent strategy : Decide to stay at the ski station forever.
Competitive ratio : n

B → +∞ when n tends to infinity.

8/27

Ski rental
We go to a ski station x days where x is unknown.
Each day, one can either :
• Buy a pair of skis for B euros (forever) or,
• Rent a pair of skis for 1 euro per day.
• Each day, if we haven’t yet bought a pair of ski,
we can buy a pair.

Buy a pair of ski or not.

Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.
Opponent strategy : Stop immediately after day 1.
Competitive ratio : B

1 . → Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
Opponent strategy : Decide to stay at the ski station forever.
Competitive ratio : n

B → +∞ when n tends to infinity.

8/27

Ski rental
We go to a ski station x days where x is unknown.
Each day, one can either :
• Buy a pair of skis for B euros (forever) or,
• Rent a pair of skis for 1 euro per day.
• Each day, if we haven’t yet bought a pair of ski,
we can buy a pair.

Buy a pair of ski or not.

Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.
Opponent strategy : Stop immediately after day 1.
Competitive ratio : B

1 . → Bad when B is large...

Algorithm 2 : Always rent a pair of ski.

Opponent strategy : Decide to stay at the ski station forever.
Competitive ratio : n

B → +∞ when n tends to infinity.

8/27

Ski rental
We go to a ski station x days where x is unknown.
Each day, one can either :
• Buy a pair of skis for B euros (forever) or,
• Rent a pair of skis for 1 euro per day.
• Each day, if we haven’t yet bought a pair of ski,
we can buy a pair.

Buy a pair of ski or not.

Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.
Opponent strategy : Stop immediately after day 1.
Competitive ratio : B

1 . → Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
Opponent strategy : Decide to stay at the ski station forever.

Competitive ratio : n
B → +∞ when n tends to infinity.

8/27

Ski rental
We go to a ski station x days where x is unknown.
Each day, one can either :
• Buy a pair of skis for B euros (forever) or,
• Rent a pair of skis for 1 euro per day.
• Each day, if we haven’t yet bought a pair of ski,
we can buy a pair.

Buy a pair of ski or not.

Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.
Opponent strategy : Stop immediately after day 1.
Competitive ratio : B

1 . → Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
Opponent strategy : Decide to stay at the ski station forever.
Competitive ratio : n

B → +∞ when n tends to infinity.

8/27

Compromise - Break-even algorithm

• The first B − 1 days, we rent skis.

• The B-th day, we buy the skis.

The break-even algorithm is (2− 1
B)-competitive

Theorem

Proof : Let k the integer where the opponent decide to stop.

• If k ≤ B − 1, the optimal strategy consists in renting and
that’s what we do.

• If k ≥ B, the optimal strategy (of cost B) consists in buying
skis at day 1. The break-even strategy has cost 2B − 1.

9/27

Compromise - Break-even algorithm

• The first B − 1 days, we rent skis.

• The B-th day, we buy the skis.

The break-even algorithm is (2− 1
B)-competitive

Theorem

Proof : Let k the integer where the opponent decide to stop.

• If k ≤ B − 1, the optimal strategy consists in renting and
that’s what we do.

• If k ≥ B, the optimal strategy (of cost B) consists in buying
skis at day 1. The break-even strategy has cost 2B − 1.

9/27

Compromise - Break-even algorithm

• The first B − 1 days, we rent skis.

• The B-th day, we buy the skis.

The break-even algorithm is (2− 1
B)-competitive

Theorem

Proof : Let k the integer where the opponent decide to stop.

• If k ≤ B − 1, the optimal strategy consists in renting and
that’s what we do.

• If k ≥ B, the optimal strategy (of cost B) consists in buying
skis at day 1. The break-even strategy has cost 2B − 1.

9/27

Optimality of the algorithm

No deterministic online algorithm has a competitive ration better
than (2− 1

B).

Theorem

Proof :

• Determinist strategy : choose an integer t.

• Opponent strategy : either choose t ′ < t or t ′ = t.

• Make calculations...

10/27

Optimality of the algorithm

No deterministic online algorithm has a competitive ration better
than (2− 1

B).

Theorem

Proof :

• Determinist strategy : choose an integer t.

• Opponent strategy : either choose t ′ < t or t ′ = t.

• Make calculations...

10/27

Randomization helps

Model :
Choose a randomized algorithm.

Opponent chooses a date (fixed forever) knowing the random choices

we will make but not their output (oblivious adversary)

There exists a (1− 1
e)−1-competitive randomized online algorithm

for ski rental.

Theorem

11/27

Randomization helps

Model :
Choose a randomized algorithm.

Opponent chooses a date (fixed forever) knowing the random choices

we will make but not their output (oblivious adversary)

There exists a (1− 1
e)−1-competitive randomized online algorithm

for ski rental.

Theorem

11/27

Randomized algorithm

Randomized algorithm :
Choose a probability distribution p on N and stop at time i with
probability pi .

⇔ A randomized algorithm is a superposition of (a possibly infinite
number of) deterministic algorithm (Ai = buy ski at time i).
(mixed strategy)

Dominated strategy :
A deterministic strategy S1 is dominated by S2 if for every
possible choice of t by the adversary, the cost(S1)≥cost(S2).

No dominated strategy has a positive probability in an optimal
mixed strategy.

Theorem

12/27

Randomized algorithm

Randomized algorithm :
Choose a probability distribution p on N and stop at time i with
probability pi .
⇔ A randomized algorithm is a superposition of (a possibly infinite
number of) deterministic algorithm (Ai = buy ski at time i).
(mixed strategy)

Dominated strategy :
A deterministic strategy S1 is dominated by S2 if for every
possible choice of t by the adversary, the cost(S1)≥cost(S2).

No dominated strategy has a positive probability in an optimal
mixed strategy.

Theorem

12/27

Randomized algorithm

Randomized algorithm :
Choose a probability distribution p on N and stop at time i with
probability pi .
⇔ A randomized algorithm is a superposition of (a possibly infinite
number of) deterministic algorithm (Ai = buy ski at time i).
(mixed strategy)

Dominated strategy :
A deterministic strategy S1 is dominated by S2 if for every
possible choice of t by the adversary, the cost(S1)≥cost(S2).

No dominated strategy has a positive probability in an optimal
mixed strategy.

Theorem

12/27

Randomized algorithm

Randomized algorithm :
Choose a probability distribution p on N and stop at time i with
probability pi .
⇔ A randomized algorithm is a superposition of (a possibly infinite
number of) deterministic algorithm (Ai = buy ski at time i).
(mixed strategy)

Dominated strategy :
A deterministic strategy S1 is dominated by S2 if for every
possible choice of t by the adversary, the cost(S1)≥cost(S2).

No dominated strategy has a positive probability in an optimal
mixed strategy.

Theorem

12/27

Game theory perspective

• For every i > B, Ai has probability 0 in an opt. strategy.

Take B = 4

Cost of the strategies depending on the ending time
Str. / Stop 1 2 3 4

A1 B B B B

A2 1 B+1 B+1 B+1

A3 1 2 B+2 B+2

A4 1 2 3 B+3

Imagine that the opponent decide to stop at step 1. Then the
optimal cost is 1 and the expected cost of the strategy is
Bp1 + p2 + p3 + p4.
Similarly, if he decides to stop at step 2. The optimal cost is 2 and
the expected cost of the strategy is Bp1 + (B + 1)p2 + 2p3 + 2p4.

13/27

Game theory perspective

• For every i > B, Ai has probability 0 in an opt. strategy.

Take B = 4

Cost of the strategies depending on the ending time
Str. / Stop 1 2 3 4

A1 B B B B

A2 1 B+1 B+1 B+1

A3 1 2 B+2 B+2

A4 1 2 3 B+3

Imagine that the opponent decide to stop at step 1. Then the
optimal cost is 1 and the expected cost of the strategy is
Bp1 + p2 + p3 + p4.
Similarly, if he decides to stop at step 2. The optimal cost is 2 and
the expected cost of the strategy is Bp1 + (B + 1)p2 + 2p3 + 2p4.

13/27

Game theory perspective

• For every i > B, Ai has probability 0 in an opt. strategy.

Take B = 4

Cost of the strategies depending on the ending time
Str. / Stop 1 2 3 4

A1 B B B B

A2 1 B+1 B+1 B+1

A3 1 2 B+2 B+2

A4 1 2 3 B+3

Imagine that the opponent decide to stop at step 1. Then the
optimal cost is 1 and the expected cost of the strategy is
Bp1 + p2 + p3 + p4.

Similarly, if he decides to stop at step 2. The optimal cost is 2 and
the expected cost of the strategy is Bp1 + (B + 1)p2 + 2p3 + 2p4.

13/27

Game theory perspective

• For every i > B, Ai has probability 0 in an opt. strategy.

Take B = 4

Cost of the strategies depending on the ending time
Str. / Stop 1 2 3 4

A1 B B B B

A2 1 B+1 B+1 B+1

A3 1 2 B+2 B+2

A4 1 2 3 B+3

Imagine that the opponent decide to stop at step 1. Then the
optimal cost is 1 and the expected cost of the strategy is
Bp1 + p2 + p3 + p4.
Similarly, if he decides to stop at step 2. The optimal cost is 2 and
the expected cost of the strategy is Bp1 + (B + 1)p2 + 2p3 + 2p4.

13/27

LP formulation

min x

Bp1 + p2 + p3 + p4 ≤ x
1

2
(Bp1 + (B + 1)p2 + 2p3 + 2p4) ≤ x

1

3
(Bp1 + (B + 1)p2 + (B + 2)p3 + 3p4) ≤ x

1

4
(Bp1 + (B + 1)p2 + (B + 2)p3 + (B + 3)p4) ≤ x

p1 + p2 + p3 + p4 = 1

Best solution : 1/(1− 1
4)4 → (1− 1

e)−1.

14/27

Randomized lower bounds - Yao’s lemma

Why is it complicated ?
Hard to find lower bounds : we have to find a strategy for
opponent for every mixed strategy (and there are infinitely many...).

Idea : Reverse the problem (via LP duality)

Assume that there is a distribution D over instances of Π such
that every deterministic online algorithm has expected competi-
tive ratio at least µ. Then, the competitive ratio of every rando-
mized online algorithm for Π is at least µ.

Yao’s Lemma

15/27

Randomized lower bounds - Yao’s lemma

Why is it complicated ?
Hard to find lower bounds : we have to find a strategy for
opponent for every mixed strategy (and there are infinitely many...).

Idea : Reverse the problem (via LP duality)

Assume that there is a distribution D over instances of Π such
that every deterministic online algorithm has expected competi-
tive ratio at least µ. Then, the competitive ratio of every rando-
mized online algorithm for Π is at least µ.

Yao’s Lemma

15/27

Randomized lower bounds - Yao’s lemma

Why is it complicated ?
Hard to find lower bounds : we have to find a strategy for
opponent for every mixed strategy (and there are infinitely many...).

Idea : Reverse the problem (via LP duality)

Assume that there is a distribution D over instances of Π such
that every deterministic online algorithm has expected competi-
tive ratio at least µ. Then, the competitive ratio of every rando-
mized online algorithm for Π is at least µ.

Yao’s Lemma

15/27

What about adaptive adversaries ?

You’ll continue skiing until you decide to buy your skis !

→ We cannot improve the 2-competitive factor.

16/27

Online matching

Model : Vertices arrive one by one (with their edges to already appeared vertices).

Matching : Subset of edges pairwise endpoint disjoint.

The Greedy Algorithm is 1
2 -competitive.

(Take an edge whenever it is possible)

Theorem

Proof :

• The endpoints of the returned matching M is a vertex cover.

• By weak duality, 2|M| = VC ≥ minVC ≥ OPT (M).

Theorem : No deterministic algorithm is α-competitive for α > 1
2 .

`1

`2

r1

r2

`1

`2

r1

r2

17/27

Online matching

Model : Vertices arrive one by one (with their edges to already appeared vertices).

Matching : Subset of edges pairwise endpoint disjoint.

The Greedy Algorithm is 1
2 -competitive.

(Take an edge whenever it is possible)

Theorem

Proof :

• The endpoints of the returned matching M is a vertex cover.

• By weak duality, 2|M| = VC ≥ minVC ≥ OPT (M).

Theorem : No deterministic algorithm is α-competitive for α > 1
2 .

`1

`2

r1

r2

`1

`2

r1

r2

17/27

Online matching

Model : Vertices arrive one by one (with their edges to already appeared vertices).

Matching : Subset of edges pairwise endpoint disjoint.

The Greedy Algorithm is 1
2 -competitive.

(Take an edge whenever it is possible)

Theorem

Proof :

• The endpoints of the returned matching M is a vertex cover.

• By weak duality, 2|M| = VC ≥ minVC ≥ OPT (M).

Theorem : No deterministic algorithm is α-competitive for α > 1
2 .

`1

`2

r1

r2

`1

`2

r1

r2

17/27

Online matching

Model : Vertices arrive one by one (with their edges to already appeared vertices).

Matching : Subset of edges pairwise endpoint disjoint.

The Greedy Algorithm is 1
2 -competitive.

(Take an edge whenever it is possible)

Theorem

Proof :

• The endpoints of the returned matching M is a vertex cover.

• By weak duality, 2|M| = VC ≥ minVC ≥ OPT (M).

Theorem : No deterministic algorithm is α-competitive for α > 1
2 .

`1

`2

r1

r2

`1

`2

r1

r2

17/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

• Give weight to edges.
• Constraint : for every node, the sum of the weights of the

edges incident to it is at most 1. (If weights are {0, 1} ⇒ Matching)

Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if ri has degree d , give weight 1

d
to every edge incident to it, when possible)

(Equivalently : Give weight 1 to ri and 1
d

to its neighbors)

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

• Give weight to edges.
• Constraint : for every node, the sum of the weights of the

edges incident to it is at most 1. (If weights are {0, 1} ⇒ Matching)

Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if ri has degree d , give weight 1

d
to every edge incident to it, when possible)

(Equivalently : Give weight 1 to ri and 1
d

to its neighbors)

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

• Give weight to edges.
• Constraint : for every node, the sum of the weights of the

edges incident to it is at most 1. (If weights are {0, 1} ⇒ Matching)

Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if ri has degree d , give weight 1

d
to every edge incident to it, when possible)

(Equivalently : Give weight 1 to ri and 1
d

to its neighbors)

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

• Give weight to edges.
• Constraint : for every node, the sum of the weights of the

edges incident to it is at most 1. (If weights are {0, 1} ⇒ Matching)

Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if ri has degree d , give weight 1

d
to every edge incident to it, when possible)

(Equivalently : Give weight 1 to ri and 1
d

to its neighbors)

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

• Give weight to edges.
• Constraint : for every node, the sum of the weights of the

edges incident to it is at most 1. (If weights are {0, 1} ⇒ Matching)

Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if ri has degree d , give weight 1

d
to every edge incident to it, when possible)

(Equivalently : Give weight 1 to ri and 1
d

to its neighbors)

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

• Give weight to edges.
• Constraint : for every node, the sum of the weights of the

edges incident to it is at most 1. (If weights are {0, 1} ⇒ Matching)

Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if ri has degree d , give weight 1

d
to every edge incident to it, when possible)

(Equivalently : Give weight 1 to ri and 1
d

to its neighbors)

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

• Give weight to edges.
• Constraint : for every node, the sum of the weights of the

edges incident to it is at most 1. (If weights are {0, 1} ⇒ Matching)

Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if ri has degree d , give weight 1

d
to every edge incident to it, when possible)

(Equivalently : Give weight 1 to ri and 1
d

to its neighbors)

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

• Give weight to edges.
• Constraint : for every node, the sum of the weights of the

edges incident to it is at most 1. (If weights are {0, 1} ⇒ Matching)

Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if ri has degree d , give weight 1

d
to every edge incident to it, when possible)

(Equivalently : Give weight 1 to ri and 1
d

to its neighbors)

2/n

2/n

2/n

2/n

2/n

18/27

Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

• Give weight to edges.
• Constraint : for every node, the sum of the weights of the

edges incident to it is at most 1. (If weights are {0, 1} ⇒ Matching)

Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if ri has degree d , give weight 1

d
to every edge incident to it, when possible)

(Equivalently : Give weight 1 to ri and 1
d

to its neighbors)

2/n

4/n

4/n

4/n

4/n

18/27

Waterfilling algorithm
What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

Mathematically :
• d(i) =

∑
(i ,j)∈E xij . (Initial level of water on `i)

• Find `j = mini∈N(j) d(i) + ri such that
∑

ri = 1 (with `j ≤ 1).
(Final level of water)

• Update xij : increase it by `j − d(i) = ri (or 0 if neg.).

19/27

Waterfilling algorithm
What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

Mathematically :
• d(i) =

∑
(i ,j)∈E xij . (Initial level of water on `i)

• Find `j = mini∈N(j) d(i) + ri such that
∑

ri = 1 (with `j ≤ 1).
(Final level of water)

• Update xij : increase it by `j − d(i) = ri (or 0 if neg.).

19/27

Waterfilling algorithm
What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

Mathematically :
• d(i) =

∑
(i ,j)∈E xij . (Initial level of water on `i)

• Find `j = mini∈N(j) d(i) + ri such that
∑

ri = 1 (with `j ≤ 1).
(Final level of water)

• Update xij : increase it by `j − d(i) = ri (or 0 if neg.).

19/27

Waterfilling algorithm
What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

1
3

1
3

1
3

Mathematically :
• d(i) =

∑
(i ,j)∈E xij . (Initial level of water on `i)

• Find `j = mini∈N(j) d(i) + ri such that
∑

ri = 1 (with `j ≤ 1).
(Final level of water)

• Update xij : increase it by `j − d(i) = ri (or 0 if neg.).

19/27

Waterfilling algorithm
What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

1
3

1
3

1
3

Mathematically :
• d(i) =

∑
(i ,j)∈E xij . (Initial level of water on `i)

• Find `j = mini∈N(j) d(i) + ri such that
∑

ri = 1 (with `j ≤ 1).
(Final level of water)

• Update xij : increase it by `j − d(i) = ri (or 0 if neg.).

19/27

Waterfilling algorithm
What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

1
3

1
3

1
3

2
3

1
3

Mathematically :
• d(i) =

∑
(i ,j)∈E xij . (Initial level of water on `i)

• Find `j = mini∈N(j) d(i) + ri such that
∑

ri = 1 (with `j ≤ 1).
(Final level of water)

• Update xij : increase it by `j − d(i) = ri (or 0 if neg.).

19/27

Waterfilling algorithm
What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

1
3

1
3

2
3

2
3

Mathematically :
• d(i) =

∑
(i ,j)∈E xij . (Initial level of water on `i)

• Find `j = mini∈N(j) d(i) + ri such that
∑

ri = 1 (with `j ≤ 1).
(Final level of water)

• Update xij : increase it by `j − d(i) = ri (or 0 if neg.).

19/27

Waterfilling algorithm
What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

1
3

1
3

2
3

2
3

Mathematically :
• d(i) =

∑
(i ,j)∈E xij . (Initial level of water on `i)

• Find `j = mini∈N(j) d(i) + ri such that
∑

ri = 1 (with `j ≤ 1).
(Final level of water)

• Update xij : increase it by `j − d(i) = ri (or 0 if neg.).

19/27

Waterfilling algorithm
What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

1
3

1
3

2
3

2
3

Mathematically :
• d(i) =

∑
(i ,j)∈E xij . (Initial level of water on `i)

• Find `j = mini∈N(j) d(i) + ri such that
∑

ri = 1 (with `j ≤ 1).
(Final level of water)

• Update xij : increase it by `j − d(i) = ri (or 0 if neg.).
19/27

Primal-dual analysis

Fractional matching :

max
∑

(i ,j)∈E

xij

soumis à∑
j/(i ,j)∈E

xij ≤ 1 ∀i ∈ L

∑
i/(i ,j)∈E

xij ≤ 1 ∀j ∈ R

xij ≤ 1 ∀(i , j) ∈ E

Fractional Vertex Cover

min
∑

αi + βj

soumis à

αi + βj ≥ 1 ∀(i , j) ∈ E

αi , βj ≥ 0 ∀i , j

Idea :
• Start with a solution where xij = 0 (with no constraint since G = ∅).
• Update sol. by increasing xij and increasing αi / creating βj .

Each time a vertex is added, we update :{
αi = g(d(i))
βj = 1− g(`(j)) where g(y) = ey−1

e−1

20/27

Primal-dual analysis
Fractional matching :

max
∑

(i ,j)∈E

xij

soumis à∑
j/(i ,j)∈E

xij ≤ 1 ∀i ∈ L

∑
i/(i ,j)∈E

xij ≤ 1 ∀j ∈ R

xij ≤ 1 ∀(i , j) ∈ E

Fractional Vertex Cover

min
∑

αi + βj

soumis à

αi + βj ≥ 1 ∀(i , j) ∈ E

αi , βj ≥ 0 ∀i , j

Idea :
• Start with a solution where xij = 0 (with no constraint since G = ∅).
• Update sol. by increasing xij and increasing αi / creating βj .

Each time a vertex is added, we update :{
αi = g(d(i))
βj = 1− g(`(j)) where g(y) = ey−1

e−1

20/27

Primal-dual analysis
Fractional matching :

max
∑

(i ,j)∈E

xij

soumis à∑
j/(i ,j)∈E

xij ≤ 1 ∀i ∈ L

∑
i/(i ,j)∈E

xij ≤ 1 ∀j ∈ R

xij ≤ 1 ∀(i , j) ∈ E

Fractional Vertex Cover

min
∑

αi + βj

soumis à

αi + βj ≥ 1 ∀(i , j) ∈ E

αi , βj ≥ 0 ∀i , j

Idea :
• Start with a solution where xij = 0 (with no constraint since G = ∅).
• Update sol. by increasing xij and increasing αi / creating βj .

Each time a vertex is added, we update :{
αi = g(d(i))
βj = 1− g(`(j)) where g(y) = ey−1

e−1

20/27

Primal-dual analysis
Fractional matching :

max
∑

(i ,j)∈E

xij

soumis à∑
j/(i ,j)∈E

xij ≤ 1 ∀i ∈ L

∑
i/(i ,j)∈E

xij ≤ 1 ∀j ∈ R

xij ≤ 1 ∀(i , j) ∈ E

Fractional Vertex Cover

min
∑

αi + βj

soumis à

αi + βj ≥ 1 ∀(i , j) ∈ E

αi , βj ≥ 0 ∀i , j

Idea :
• Start with a solution where xij = 0 (with no constraint since G = ∅).
• Update sol. by increasing xij and increasing αi / creating βj .

Each time a vertex is added, we update :{
αi = g(d(i))
βj = 1− g(`(j)) where g(y) = ey−1

e−1

20/27

Primal-dual analysis
Fractional matching :

max
∑

(i ,j)∈E

xij

soumis à∑
j/(i ,j)∈E

xij ≤ 1 ∀i ∈ L

∑
i/(i ,j)∈E

xij ≤ 1 ∀j ∈ R

xij ≤ 1 ∀(i , j) ∈ E

Fractional Vertex Cover

min
∑

αi + βj

soumis à

αi + βj ≥ 1 ∀(i , j) ∈ E

αi , βj ≥ 0 ∀i , j

Idea :
• Start with a solution where xij = 0 (with no constraint since G = ∅).
• Update sol. by increasing xij and increasing αi / creating βj .

Each time a vertex is added, we update :{
αi = g(d(i))
βj = 1− g(`(j)) where g(y) = ey−1

e−1
20/27

Analysis (cont.){
αi = g(d(i))
βj = 1− g(`(j))

Observation 1 : For every i , j ∈ E , αi + βj ≥ 1.
Proof :

• The level of water d(i) increases with time and g is increasing.

• `(j) is fixed forever and `(j) ≥ d(i) at step j .

e

e − 1

∑
i ,j

xij ≥
∑
i

αi +
∑
j

βj

Key lemma

By Weak Duality theorem, it provides a e
e−1 -approximation

algorithm.

21/27

Analysis (cont.){
αi = g(d(i))
βj = 1− g(`(j))

Observation 1 : For every i , j ∈ E , αi + βj ≥ 1.

Proof :

• The level of water d(i) increases with time and g is increasing.

• `(j) is fixed forever and `(j) ≥ d(i) at step j .

e

e − 1

∑
i ,j

xij ≥
∑
i

αi +
∑
j

βj

Key lemma

By Weak Duality theorem, it provides a e
e−1 -approximation

algorithm.

21/27

Analysis (cont.){
αi = g(d(i))
βj = 1− g(`(j))

Observation 1 : For every i , j ∈ E , αi + βj ≥ 1.
Proof :

• The level of water d(i) increases with time and g is increasing.

• `(j) is fixed forever and `(j) ≥ d(i) at step j .

e

e − 1

∑
i ,j

xij ≥
∑
i

αi +
∑
j

βj

Key lemma

By Weak Duality theorem, it provides a e
e−1 -approximation

algorithm.

21/27

Analysis (cont.){
αi = g(d(i))
βj = 1− g(`(j))

Observation 1 : For every i , j ∈ E , αi + βj ≥ 1.
Proof :

• The level of water d(i) increases with time and g is increasing.

• `(j) is fixed forever and `(j) ≥ d(i) at step j .

e

e − 1

∑
i ,j

xij ≥
∑
i

αi +
∑
j

βj

Key lemma

By Weak Duality theorem, it provides a e
e−1 -approximation

algorithm.

21/27

Analysis (cont.){
αi = g(d(i))
βj = 1− g(`(j))

Observation 1 : For every i , j ∈ E , αi + βj ≥ 1.
Proof :

• The level of water d(i) increases with time and g is increasing.

• `(j) is fixed forever and `(j) ≥ d(i) at step j .

e

e − 1

∑
i ,j

xij ≥
∑
i

αi +
∑
j

βj

Key lemma

By Weak Duality theorem, it provides a e
e−1 -approximation

algorithm.
21/27

Analysis (cont. 2)
How can we prove such a thing ?

e

e − 1

∑
i ,j

xij ≥
∑
i

αi +
∑
j

βj

Idea (oversimplified) :
What increases in the primal :

C =
∑

i∈N(j)

ri =
∑

i∈N(j)

`j − d(i)

What increases in the dual :

• βj = 1− g(`(j)).

Related to the integral of 1− g (×C).

• Each αi in N(j) ↗ by g(`(j))− g(d(i)).

Rel. to integral of g ′ (×C).

⇒ g is the function satisfying 1− g + g ′ = e
e−1 .

22/27

Analysis (cont. 2)
How can we prove such a thing ?

e

e − 1

∑
i ,j

xij ≥
∑
i

αi +
∑
j

βj

Idea (oversimplified) :
What increases in the primal :

C =
∑

i∈N(j)

ri =
∑

i∈N(j)

`j − d(i)

What increases in the dual :

• βj = 1− g(`(j)).

Related to the integral of 1− g (×C).

• Each αi in N(j) ↗ by g(`(j))− g(d(i)).

Rel. to integral of g ′ (×C).

⇒ g is the function satisfying 1− g + g ′ = e
e−1 .

22/27

Analysis (cont. 2)
How can we prove such a thing ?

e

e − 1

∑
i ,j

xij ≥
∑
i

αi +
∑
j

βj

Idea (oversimplified) :
What increases in the primal :

C =
∑

i∈N(j)

ri =
∑

i∈N(j)

`j − d(i)

What increases in the dual :

• βj = 1− g(`(j)).

Related to the integral of 1− g (×C).

• Each αi in N(j) ↗ by g(`(j))− g(d(i)).

Rel. to integral of g ′ (×C).

⇒ g is the function satisfying 1− g + g ′ = e
e−1 .

22/27

Analysis (cont. 2)
How can we prove such a thing ?

e

e − 1

∑
i ,j

xij ≥
∑
i

αi +
∑
j

βj

Idea (oversimplified) :
What increases in the primal :

C =
∑

i∈N(j)

ri =
∑

i∈N(j)

`j − d(i)

What increases in the dual :

• βj = 1− g(`(j)).

Related to the integral of 1− g (×C).

• Each αi in N(j) ↗ by g(`(j))− g(d(i)). Rel. to integral of g ′ (×C).

⇒ g is the function satisfying 1− g + g ′ = e
e−1 .

22/27

Analysis (cont. 2)
How can we prove such a thing ?

e

e − 1

∑
i ,j

xij ≥
∑
i

αi +
∑
j

βj

Idea (oversimplified) :
What increases in the primal :

C =
∑

i∈N(j)

ri =
∑

i∈N(j)

`j − d(i)

What increases in the dual :

• βj = 1− g(`(j)). Related to the integral of 1− g (×C).

• Each αi in N(j) ↗ by g(`(j))− g(d(i)). Rel. to integral of g ′ (×C).

⇒ g is the function satisfying 1− g + g ′ = e
e−1 .

22/27

Analysis (cont. 2)
How can we prove such a thing ?

e

e − 1

∑
i ,j

xij ≥
∑
i

αi +
∑
j

βj

Idea (oversimplified) :
What increases in the primal :

C =
∑

i∈N(j)

ri =
∑

i∈N(j)

`j − d(i)

What increases in the dual :

• βj = 1− g(`(j)). Related to the integral of 1− g (×C).

• Each αi in N(j) ↗ by g(`(j))− g(d(i)). Rel. to integral of g ′ (×C).

⇒ g is the function satisfying 1− g + g ′ = e
e−1 .

22/27

Summary

The Waterfilling Algorithm is a deterministic algorithm for frac-
tional matching of competitive ratio e

e−1 .

Theorem

Remark : No deterministic algorithm can beat this ratio.

Proof :
Half graph = Edges li , rj for every j ≥ i .

No deterministic algorithm can behave
well against all the permutations of the
RHS of the half graph.

23/27

Summary

The Waterfilling Algorithm is a deterministic algorithm for frac-
tional matching of competitive ratio e

e−1 .

Theorem

Remark : No deterministic algorithm can beat this ratio.

Proof :
Half graph = Edges li , rj for every j ≥ i .

No deterministic algorithm can behave
well against all the permutations of the
RHS of the half graph.

23/27

Summary

The Waterfilling Algorithm is a deterministic algorithm for frac-
tional matching of competitive ratio e

e−1 .

Theorem

Remark : No deterministic algorithm can beat this ratio.

Proof :
Half graph = Edges li , rj for every j ≥ i .

No deterministic algorithm can behave
well against all the permutations of the
RHS of the half graph.

23/27

Summary

The Waterfilling Algorithm is a deterministic algorithm for frac-
tional matching of competitive ratio e

e−1 .

Theorem

Remark : No deterministic algorithm can beat this ratio.

Proof :
Half graph = Edges li , rj for every j ≥ i .

No deterministic algorithm can behave
well against all the permutations of the
RHS of the half graph.

23/27

Randomized Online Bipartite Matching

Model : Vertices of L are there from the beginning (offline
vertices).
Vertices of R arrive one after another (online vertices).

Reminder : No deterministic algorithm can beats competitive
ratio 1

2 .

24/27

Randomized algorithm

There exists a (1− 1
e)-competitive randomized algorithm for on-

line bipartite matching.

Theorem (Karp, Vazirani, Vazirani ’90, Goel, Mehta’08)

Algorithm Ranking
Choose a random ordering σ of A.
When a vertex of B arrives, match it with its largest (in σ)
available neighbor in A.

Two proofs :

• Primal dual approach (Devanur, Jain, Kleinberg ’13)

• With a “typical” probabilistic argument KVV’90, GM’08

25/27

Randomized algorithm

There exists a (1− 1
e)-competitive randomized algorithm for on-

line bipartite matching.

Theorem (Karp, Vazirani, Vazirani ’90, Goel, Mehta’08)

Algorithm Ranking
Choose a random ordering σ of A.
When a vertex of B arrives, match it with its largest (in σ)
available neighbor in A.

Two proofs :

• Primal dual approach (Devanur, Jain, Kleinberg ’13)

• With a “typical” probabilistic argument KVV’90, GM’08

25/27

Randomized algorithm

There exists a (1− 1
e)-competitive randomized algorithm for on-

line bipartite matching.

Theorem (Karp, Vazirani, Vazirani ’90, Goel, Mehta’08)

Algorithm Ranking
Choose a random ordering σ of A.
When a vertex of B arrives, match it with its largest (in σ)
available neighbor in A.

Two proofs :

• Primal dual approach (Devanur, Jain, Kleinberg ’13)

• With a “typical” probabilistic argument KVV’90, GM’08

25/27

Primal dual approach
For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Yi in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm”.

(Very sketchy) flavour of the proof :

• We will define some (randomized) αi , βj when (i , j) are
matched.

• αi = e
e−1h(Yi) and βi = e

e−1 (1− h(Yi)).

• If (i , j) is added in M then the dual increases by e
e−1 .

• Key Lemma : For every (i , j) ∈ E , E(αi + βj) ≥ 1.

• ⇒ In expectation the constraints of the dual are satisfied.

Follows from properties of h(y) = ey−1 close to the ones of the
previous proof.

26/27

Primal dual approach
For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Yi in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm”.

(Very sketchy) flavour of the proof :

• We will define some (randomized) αi , βj when (i , j) are
matched.

• αi = e
e−1h(Yi) and βi = e

e−1 (1− h(Yi)).

• If (i , j) is added in M then the dual increases by e
e−1 .

• Key Lemma : For every (i , j) ∈ E , E(αi + βj) ≥ 1.

• ⇒ In expectation the constraints of the dual are satisfied.

Follows from properties of h(y) = ey−1 close to the ones of the
previous proof.

26/27

Primal dual approach
For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Yi in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm”.

(Very sketchy) flavour of the proof :

• We will define some (randomized) αi , βj when (i , j) are
matched.

• αi = e
e−1h(Yi) and βi = e

e−1 (1− h(Yi)).

• If (i , j) is added in M then the dual increases by e
e−1 .

• Key Lemma : For every (i , j) ∈ E , E(αi + βj) ≥ 1.

• ⇒ In expectation the constraints of the dual are satisfied.

Follows from properties of h(y) = ey−1 close to the ones of the
previous proof.

26/27

Primal dual approach
For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Yi in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm”.

(Very sketchy) flavour of the proof :

• We will define some (randomized) αi , βj when (i , j) are
matched.

• αi = e
e−1h(Yi) and βi = e

e−1 (1− h(Yi)).

• If (i , j) is added in M then the dual increases by e
e−1 .

• Key Lemma : For every (i , j) ∈ E , E(αi + βj) ≥ 1.

• ⇒ In expectation the constraints of the dual are satisfied.

Follows from properties of h(y) = ey−1 close to the ones of the
previous proof.

26/27

Primal dual approach
For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Yi in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm”.

(Very sketchy) flavour of the proof :

• We will define some (randomized) αi , βj when (i , j) are
matched.

• αi = e
e−1h(Yi) and βi = e

e−1 (1− h(Yi)).

• If (i , j) is added in M then the dual increases by e
e−1 .

• Key Lemma : For every (i , j) ∈ E , E(αi + βj) ≥ 1.

• ⇒ In expectation the constraints of the dual are satisfied.

Follows from properties of h(y) = ey−1 close to the ones of the
previous proof.

26/27

Primal dual approach
For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Yi in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm”.

(Very sketchy) flavour of the proof :

• We will define some (randomized) αi , βj when (i , j) are
matched.

• αi = e
e−1h(Yi) and βi = e

e−1 (1− h(Yi)).

• If (i , j) is added in M then the dual increases by e
e−1 .

• Key Lemma : For every (i , j) ∈ E , E(αi + βj) ≥ 1.

• ⇒ In expectation the constraints of the dual are satisfied.

Follows from properties of h(y) = ey−1 close to the ones of the
previous proof.

26/27

Primal dual approach
For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Yi in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm”.

(Very sketchy) flavour of the proof :

• We will define some (randomized) αi , βj when (i , j) are
matched.

• αi = e
e−1h(Yi) and βi = e

e−1 (1− h(Yi)).

• If (i , j) is added in M then the dual increases by e
e−1 .

• Key Lemma : For every (i , j) ∈ E , E(αi + βj) ≥ 1.

• ⇒ In expectation the constraints of the dual are satisfied.

Follows from properties of h(y) = ey−1 close to the ones of the
previous proof.

26/27

Conclusion

Thanks for your attention !

27/27

