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Today : online algorithms

• Talk 1 : Introduction to online algorithms - Nicolas Bousquet
(LIRIS).

• Talk 2 : Online algorithms with predictions - Bertrand Simon
(IN2P3).

• Talk 3 : Online edge coloring - Clément Legrand-Duchesne
(LaBRI).
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What is an online algorithm ?

• Input arrives sequentially over time (arrival
order).

• Decisions must be taken without the
knowledge of the future input.

• Decisions are irrevocable.
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Illustration : Graph coloring on trees

Greedy Algorithm : Give to each vertex the smallest possible
color.

→ This algorithm may output a (∆ + 1) coloring. (while there exists a

2-coloring)

Typical question : Can we find an algorithm that “approximates”
the quality of the best offline algorithm ?
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Types of adversaries

You shall choose an instance of that type.
e.g. “a graph”, “a planar graph”, “an interval graph”

This will be my (deterministic / randomized) algorithm.

Héhéhé ! I send you the worst possible instance (and or-
dering) ! I am evil !

This is my decision for the 1st vertex.

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

Adaptive adversary. Knows the algorithm and all the choices
performed so far and chooses the next action. (stronger adversary)

Two levels of such adversaries
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Héhéhé ! I will send you the worst possible 1st vertex of
an instance and I’ll see next... I am super evil !

This is my decision for the 1st vertex.

Oblivious Adversary. Knows the algorithm and choose -once for
all- the instance. (weaker adversary)

Adaptive adversary. Knows the algorithm and all the choices
performed so far and chooses the next action. (stronger adversary)

Two levels of such adversaries

5/27



Types of adversaries

You shall choose an instance of that type.
e.g. “a graph”, “a planar graph”, “an interval graph”

This will be my (deterministic / randomized) algorithm.
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Deterministic vs randomized

Two types of online algorithms : deterministic or randomized !

Remark :
Oblivious and adaptive adversaries are equivalent for deterministic
algorithms.
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Performance of online algorithms

Performace of an online algorithm Given a maximization
problem, I an instance, an algorithm is :

• α-competitive the algorithm outputs a solution of (expected)
size ≥ α · OPT (I ) + c where OPT (I ) denotes the size of the
optimal solution.

• α-strictly competitive the algorithm outputs a solution of
(expected) size ≥ α · OPT (I ) where OPT (I ) denotes the size
of the optimal solution.

Remark :

• α ≤ 1 and if α = 1 we have an almost optimal algorithm.

• For a minimization function we can twist the definition

• For a deterministic algorithm, we are just looking for the worst
instance. For randomized algorithms, we look for the worst
possible expected size.
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Ski rental
We go to a ski station x days where x is unknown.
Each day, one can either :
• Buy a pair of skis for B euros (forever) or,

• Rent a pair of skis for 1 euro per day.
• Each day, if we haven’t yet bought a pair of ski,
we can buy a pair.

Buy a pair of ski or not.

Decide when the ski trip is over.

Algorithm 1 : Buy a pair immediately.
Opponent strategy : Stop immediately after day 1.
Competitive ratio : B

1 . → Bad when B is large...

Algorithm 2 : Always rent a pair of ski.
Opponent strategy : Decide to stay at the ski station forever.
Competitive ratio : n

B → +∞ when n tends to infinity.
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Compromise - Break-even algorithm

• The first B − 1 days, we rent skis.

• The B-th day, we buy the skis.

The break-even algorithm is (2− 1
B )-competitive

Theorem

Proof : Let k the integer where the opponent decide to stop.

• If k ≤ B − 1, the optimal strategy consists in renting and
that’s what we do.

• If k ≥ B, the optimal strategy (of cost B) consists in buying
skis at day 1. The break-even strategy has cost 2B − 1.
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Optimality of the algorithm

No deterministic online algorithm has a competitive ration better
than (2− 1

B ).

Theorem

Proof :

• Determinist strategy : choose an integer t.

• Opponent strategy : either choose t ′ < t or t ′ = t.

• Make calculations...
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Randomization helps

Model :
Choose a randomized algorithm.

Opponent chooses a date (fixed forever) knowing the random choices

we will make but not their output (oblivious adversary)

There exists a (1− 1
e )−1-competitive randomized online algorithm

for ski rental.

Theorem
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Randomized algorithm

Randomized algorithm :
Choose a probability distribution p on N and stop at time i with
probability pi .

⇔ A randomized algorithm is a superposition of (a possibly infinite
number of) deterministic algorithm (Ai = buy ski at time i).
(mixed strategy)

Dominated strategy :
A deterministic strategy S1 is dominated by S2 if for every
possible choice of t by the adversary, the cost(S1)≥cost(S2).

No dominated strategy has a positive probability in an optimal
mixed strategy.

Theorem
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Game theory perspective

• For every i > B, Ai has probability 0 in an opt. strategy.

Take B = 4

Cost of the strategies depending on the ending time
Str. / Stop 1 2 3 4

A1 B B B B

A2 1 B+1 B+1 B+1

A3 1 2 B+2 B+2

A4 1 2 3 B+3

Imagine that the opponent decide to stop at step 1. Then the
optimal cost is 1 and the expected cost of the strategy is
Bp1 + p2 + p3 + p4.
Similarly, if he decides to stop at step 2. The optimal cost is 2 and
the expected cost of the strategy is Bp1 + (B + 1)p2 + 2p3 + 2p4.
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LP formulation

min x

Bp1 + p2 + p3 + p4 ≤ x
1

2
(Bp1 + (B + 1)p2 + 2p3 + 2p4) ≤ x

1

3
(Bp1 + (B + 1)p2 + (B + 2)p3 + 3p4) ≤ x

1

4
(Bp1 + (B + 1)p2 + (B + 2)p3 + (B + 3)p4) ≤ x

p1 + p2 + p3 + p4 = 1

Best solution : 1/(1− 1
4 )4 → (1− 1

e )−1.
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Randomized lower bounds - Yao’s lemma

Why is it complicated ?
Hard to find lower bounds : we have to find a strategy for
opponent for every mixed strategy (and there are infinitely many...).

Idea : Reverse the problem (via LP duality)

Assume that there is a distribution D over instances of Π such
that every deterministic online algorithm has expected competi-
tive ratio at least µ. Then, the competitive ratio of every rando-
mized online algorithm for Π is at least µ.

Yao’s Lemma
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What about adaptive adversaries ?

You’ll continue skiing until you decide to buy your skis !

→ We cannot improve the 2-competitive factor.
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Online matching

Model : Vertices arrive one by one (with their edges to already appeared vertices).

Matching : Subset of edges pairwise endpoint disjoint.

The Greedy Algorithm is 1
2 -competitive.

(Take an edge whenever it is possible)

Theorem

Proof :

• The endpoints of the returned matching M is a vertex cover.

• By weak duality, 2|M| = VC ≥ minVC ≥ OPT (M).

Theorem : No deterministic algorithm is α-competitive for α > 1
2 .

`1

`2

r1

r2

`1

`2

r1

r2
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Online Fractional Bipartite Matching
Model :
Vertices of L are there from the beginning (offline vertices).
Vertices of R arrive one after another (online vertices).

• Give weight to edges.
• Constraint : for every node, the sum of the weights of the

edges incident to it is at most 1. (If weights are {0, 1} ⇒ Matching)

Naive algorithm : Balance weight between all the edges incident
to it (when possible)
(That is if ri has degree d , give weight 1

d
to every edge incident to it, when possible)

(Equivalently : Give weight 1 to ri and 1
d

to its neighbors)
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Waterfilling algorithm
What went wrong ?
We assign weight without distinction between neighbors.

Waterfilling algorithm :
Balance weight : Maximize the minimum of the weights

Mathematically :
• d(i) =

∑
(i ,j)∈E xij . (Initial level of water on `i )

• Find `j = mini∈N(j) d(i) + ri such that
∑

ri = 1 (with `j ≤ 1).
(Final level of water)

• Update xij : increase it by `j − d(i) = ri (or 0 if neg.).
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Primal-dual analysis

Fractional matching :

max
∑

(i ,j)∈E

xij

soumis à∑
j/(i ,j)∈E

xij ≤ 1 ∀i ∈ L

∑
i/(i ,j)∈E

xij ≤ 1 ∀j ∈ R

xij ≤ 1 ∀(i , j) ∈ E

Fractional Vertex Cover

min
∑

αi + βj

soumis à

αi + βj ≥ 1 ∀(i , j) ∈ E

αi , βj ≥ 0 ∀i , j

Idea :
• Start with a solution where xij = 0 (with no constraint since G = ∅).
• Update sol. by increasing xij and increasing αi / creating βj .

Each time a vertex is added, we update :{
αi = g(d(i))
βj = 1− g(`(j)) where g(y) = ey−1

e−1
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Analysis (cont.){
αi = g(d(i))
βj = 1− g(`(j))

Observation 1 : For every i , j ∈ E , αi + βj ≥ 1.
Proof :

• The level of water d(i) increases with time and g is increasing.

• `(j) is fixed forever and `(j) ≥ d(i) at step j .

e

e − 1

∑
i ,j

xij ≥
∑
i

αi +
∑
j

βj

Key lemma

By Weak Duality theorem, it provides a e
e−1 -approximation

algorithm.
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Analysis (cont. 2)
How can we prove such a thing ?

e

e − 1

∑
i ,j

xij ≥
∑
i

αi +
∑
j

βj

Idea (oversimplified) :
What increases in the primal :

C =
∑

i∈N(j)

ri =
∑

i∈N(j)

`j − d(i)

What increases in the dual :

• βj = 1− g(`(j)).

Related to the integral of 1− g (×C).

• Each αi in N(j) ↗ by g(`(j))− g(d(i)).

Rel. to integral of g ′ (×C).

⇒ g is the function satisfying 1− g + g ′ = e
e−1 .
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Summary

The Waterfilling Algorithm is a deterministic algorithm for frac-
tional matching of competitive ratio e

e−1 .

Theorem

Remark : No deterministic algorithm can beat this ratio.

Proof :
Half graph = Edges li , rj for every j ≥ i .

No deterministic algorithm can behave
well against all the permutations of the
RHS of the half graph.
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Randomized Online Bipartite Matching

Model : Vertices of L are there from the beginning (offline
vertices).
Vertices of R arrive one after another (online vertices).

Reminder : No deterministic algorithm can beats competitive
ratio 1

2 .
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Randomized algorithm

There exists a (1− 1
e )-competitive randomized algorithm for on-

line bipartite matching.

Theorem (Karp, Vazirani, Vazirani ’90, Goel, Mehta’08)

Algorithm Ranking
Choose a random ordering σ of A.
When a vertex of B arrives, match it with its largest (in σ)
available neighbor in A.

Two proofs :

• Primal dual approach (Devanur, Jain, Kleinberg ’13)

• With a “typical” probabilistic argument KVV’90, GM’08
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Primal dual approach
For the analysis : instead of a ranking, we associate to each vertex
i of L a random real Yi in [0, 1].

Tim Roughgarden “The rough idea is to set things up so that the
probability that a given edge is included the matching plays the
same role as its fractional value in the WF algorithm”.

(Very sketchy) flavour of the proof :

• We will define some (randomized) αi , βj when (i , j) are
matched.

• αi = e
e−1h(Yi ) and βi = e

e−1 (1− h(Yi )).

• If (i , j) is added in M then the dual increases by e
e−1 .

• Key Lemma : For every (i , j) ∈ E , E(αi + βj) ≥ 1.

• ⇒ In expectation the constraints of the dual are satisfied.

Follows from properties of h(y) = ey−1 close to the ones of the
previous proof.
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Conclusion

Thanks for your attention !
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