Dynamic graphs \& vertex coloring

Daniel Gonçalves, LIRMM, Univ. Montpellier \& CNRS

JCRAALMA, 15th January 2024 based on

[BCHN18] Dynamic algorithms for graph coloring, by Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai, SODA 2018.
[BCK+19] Dynamic graph coloring, by Luis Barba, Jean Cardinal, Matias Korman, Stefan Langerman, André van Renssen, Marcel Roeloffzen, and Sander Verdonschot, Algorithmica, 2019.
[HNW20] Explicit and implicit dynamic coloring of graphs with bounded arboricity, by Monika Henzinger, Stefan Neumann, and Andreas Wiese, ArXiv 2020.
[CNR23] Improved Dynamic Colouring of Sparse Graphs, by Aleksander B.G.
Christiansen, Krzysztof Nowicki, and Eva Rotenberg, STOC 2023.

Introduction

$(\Delta+1)$-coloring with $O(\log n)$ amortized update time Warmup
Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings Implicit \& deterministic $2^{O(\alpha)}$-coloring Implicit \& deterministic $O\left(\alpha^{2}\right)$-coloring

Introduction

$(\Delta+1)$-coloring with $O(\log n)$ amortized update time Warmup
Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit \& deterministic $2^{O(\alpha)}$-coloring Implicit \& deterministic $O\left(\alpha^{2}\right)$-coloring

Dynamic graph

Dynamic graph G:

- A fixed vertex set V, with $n=|V|$.
- A sequence of updates (edge additions/deletions): $\left(\pm e_{i}\right)_{1 \leq i \leq t}$
- Initially, the edge set is empty: $E_{0}=\emptyset$.
- If the $i^{\text {th }}$ update is a $+e_{i}$, then $E_{i}=E_{i-1} \cup\left\{e_{i}\right\}$.
- If the $i^{\text {th }}$ update is a $-e_{i}$, then $E_{i}=E_{i-1} \backslash\left\{e_{i}\right\}$.
\Longrightarrow a sequence of graphs: $\left(\left(V, E_{i}\right)\right)_{0 \leq i \leq t}$

Dynamic graph

Dynamic graph G:

- A fixed vertex set V, with $n=|V|$.
- A sequence of updates (edge additions/deletions): $\left(\pm e_{i}\right)_{1 \leq i \leq t}$
- Initially, the edge set is empty: $E_{0}=\emptyset$.
- If the $i^{\text {th }}$ update is a $+e_{i}$, then $E_{i}=E_{i-1} \cup\left\{e_{i}\right\}$.
- If the $i^{\text {th }}$ update is a $-e_{i}$, then $E_{i}=E_{i-1} \backslash\left\{e_{i}\right\}$.
\Longrightarrow a sequence of graphs: $\left(\left(V, E_{i}\right)\right)_{0 \leq i \leq t}$

Combinatorial Problem П

- We want solutions of Π for the graphs (V, E_{i}).
- Computing a solution for (V, E_{i}), should be easier given a solution of $\left(V, E_{i-1}\right)$.

Algorithms for dynamic graphs

Updating a solution (for some problem Π) while G evolves

- Given a preset sequence of updates
- Start with a solution $S o l_{0} \in \Pi\left(\left(V, E_{0}\right)\right)$.
- Goal: correct Solo after i updates to obtain Sol ${ }_{i}$.

Algorithms for dynamic graphs

Updating a solution (for some problem Π) while G evolves

- Given a preset sequence of updates (oblivious adversary).
- Start with a solution $S_{0} l_{0} \in \Pi\left(\left(V, E_{0}\right)\right)$.
- Goal: correct Solo after i updates to obtain Sol ${ }_{i}$.

Algorithms for dynamic graphs

Updating a solution (for some problem Π) while G evolves

- Given a preset sequence of updates (oblivious adversary).
- Start with a solution Sol $L_{0} \in \Pi\left(\left(V, E_{0}\right)\right)$.
- Goal: correct Solo after i updates to obtain Sol l_{i}. Two ways:
- Explicitly: a current solution is stored in memory. Update the solution $\left(\mathrm{Sol}_{i-1} \longrightarrow S o l_{i}\right)$ so that $\mathrm{Sol}_{i} \in \Pi\left(V, E_{i}\right)$.
- Implicitly: a solution can be retrieved from queries.

Algorithms for dynamic graphs
Updating a solution (for some problem Π) while G evolves

- Given a preset sequence of updates (oblivious adversary).
- Start with a solution Solo $\in \Pi\left(\left(V, E_{0}\right)\right)$.
- Goal: correct $S_{0} l_{0}$ after i updates to obtain Sol $_{i}$. Two ways:

Explicitly: a current solution is stored in memory.
Update the solution $\left(\right.$ Sol $\left._{i-1} \longrightarrow S o I_{i}\right)$ so that Sol $_{i} \in \Pi\left(V, E_{i}\right)$.
Implicitly: a solution can be retrieved from queries.
Explicit: after $i^{\text {th }}$ update Implicit - querie: $\operatorname{Color}(v)$

Time complexity measures

Case of explicit algorithms

- Time complexity per update.

It can be
Worst-case: maximum complexity for Sol $_{i-1} \longrightarrow$ Sol $_{i}$,
or
Amortized: Complexity $\left(\mathrm{Sol}_{0} \longrightarrow \mathrm{Sol}_{t}\right) / t$ for a suff. large t.

Time complexity measures

Case of explicit algorithms

- Time complexity per update.

It can be
Worst-case: maximum complexity for Sol $_{i-1} \longrightarrow$ Sol $_{i}$,
or
Amortized: Complexity $\left(\mathrm{Sol}_{0} \longrightarrow \mathrm{Sol}_{t}\right) / t$ for a suff. large t.

Case of implicit algorithms

- Twofold complexity: per update \& per query. Also, worst-case/amortized options.

Time complexity measures

Case of explicit algorithms

- Time complexity per update.

It can be
Worst-case: maximum complexity for Sol $_{i-1} \longrightarrow$ Sol $_{i}$, or
Amortized: Complexity $\left(\mathrm{Sol}_{0} \longrightarrow \mathrm{Sol}_{t}\right) / t$ for a suff. large t.

Case of implicit algorithms

- Twofold complexity: per update \& per query. Also, worst-case/amortized options.

For randomized algorithms, the measures can be weakened : e.g. provided in expectation, or with high probability.

Coloring with respect to Δ or the arboricity α

Brooks theorem

$$
\chi(G) \leq \Delta+1
$$

Arboricity $\alpha(G)$

- $\alpha(G): \min k$ s.t. G decomposes into k forests.

Coloring with respect to Δ or the arboricity α

Brooks theorem

$$
\chi(G) \leq \Delta+1
$$

Arboricity $\alpha(G)$

- $\alpha(G): \min k$ s.t. G decomposes into k forests.
- Every graph G has at most $\alpha(G) \times(n-1)$ edges.

Coloring with respect to Δ or the arboricity α

Brooks theorem

$$
\chi(G) \leq \Delta+1
$$

Arboricity $\alpha(G)$

- $\alpha(G): \min k$ s.t. G decomposes into k forests.
- Every graph G has at most $\alpha(G) \times(n-1)$ edges.
- Every graph G is $(2 \alpha(G)-1)$-degenerate.

Coloring with respect to Δ or the arboricity α

Brooks theorem

$$
\chi(G) \leq \Delta+1
$$

Arboricity $\alpha(G)$

- $\alpha(G): \min k$ s.t. G decomposes into k forests.
- Every graph G has at most $\alpha(G) \times(n-1)$ edges.
- Every graph G is $(2 \alpha(G)-1)$-degenerate.

$$
\chi(G) \leq 2 \alpha(G)
$$

Colorings in dynamic graphs

Explicit $(\Delta+1)$-coloring

- $O(\log \Delta)$ expected amortized update time

Colorings in dynamic graphs

Explicit ($\Delta+1$)-coloring

- $O(\log \Delta)$ expected amortized update time
$f(\alpha, n)$-colorings
- Explicit $O(\alpha \log n)$-coloring, with $O\left(\log ^{2} n\right)$ expected amortized update time.
[HNW20]

Colorings in dynamic graphs

Explicit ($\Delta+1$)-coloring

- $O(\log \Delta)$ expected amortized update time
$f(\alpha, n)$-colorings
- Explicit $O(\alpha \log n)$-coloring, with $O\left(\log ^{2} n\right)$ expected amortized update time.
[HNW20]
- For explicit $f(\alpha)$-coloring, the update time is $\Omega(\operatorname{poly}(n))$.
[BCK+19]

Colorings in dynamic graphs

Explicit ($\Delta+1$)-coloring

- $O(\log \Delta)$ expected amortized update time
$f(\alpha, n)$-colorings
- Explicit $O(\alpha \log n)$-coloring, with $O\left(\log ^{2} n\right)$ expected amortized update time.
- For explicit $f(\alpha)$-coloring, the update time is $\Omega(p o l y(n))$.
[BCK+19]
- Implicit \& deterministic $2^{O(\alpha)}$-coloring, with $O\left(\log ^{3} n\right)$ amortized update time, and $O(\alpha \log n)$ query time.

Colorings in dynamic graphs

Explicit ($\Delta+1$)-coloring

- $O(\log \Delta)$ expected amortized update time
$f(\alpha, n)$-colorings
- Explicit $O(\alpha \log n)$-coloring, with $O\left(\log ^{2} n\right)$ expected amortized update time.
[HNW20]
- For explicit $f(\alpha)$-coloring, the update time is $\Omega(p o l y(n))$.
[BCK+19]
- Implicit \& deterministic $2^{O(\alpha)}$-coloring, with $O\left(\log ^{3} n\right)$ amortized update time, and $O(\alpha \log n)$ query time.
- Implicit \& deterministic $O\left(\alpha^{2}\right)$-coloring, with $O\left(\log \alpha \log ^{3} n\right)$ worst-case update time, and $O\left(\alpha^{5} \log n\right)$ query time.

Introduction

$(\Delta+1)$-coloring with $O(\log n)$ amortized update time Warmup

Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit \& deterministic $2^{\circ(\alpha)}$-coloring Implicit \& deterministic $O\left(\alpha^{2}\right)$-coloring

Introduction
$(\Delta+1)$-coloring with $O(\log n)$ amortized update time Warmup Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit \& deterministic $2^{O(\alpha)}$-coloring Implicit \& deterministic $O\left(\alpha^{2}\right)$-coloring

2Δ-coloring with $O(1)$ expected amortized update time

Current coloring stored in a table $c[\cdot]$.
Update algorithm after deleting (u, v)

- Do nothing

Update algorithm after adding (u, v)

- If $c[u] \neq c[v]$: do nothing.
- If $c[u]=c[v]$:
$c(v) \leftarrow$ pick a color absent from $N(v)$ u.a.r..

2Δ-coloring with $O(1)$ expected amortized update time

Current coloring stored in a table $c[\cdot]$.
Update algorithm after deleting (u, v)

- Do nothing

Update algorithm after adding (u, v)

- If $c[u] \neq c[v]$: do nothing.
- If $c[u]=c[v]: \quad$ This case happen with proba. $\leq 1 / \Delta$. $c(v) \leftarrow$ pick a color absent from $N(v)$ u.a.r.. Time $O(\Delta)$

2Δ-coloring with $O(1)$ expected amortized update time

Neighborhoods stored with two tables $N[\cdot]$ and $E[\cdot, \cdot]$.

Update algorithm after deleting (u, v)

- Remove u from $N(v) \& v$ from $N(u)$

Update algorithm after adding (u, v)

- Add u in $N(v) \& v$ in $N(u)$
- If $c[u] \neq c[v]$: do nothing.
- If $c[u]=c[v]: \quad$ This case happen with proba. $\leq 1 / \Delta$. $c(v) \leftarrow$ pick a color absent from $N(v)$ u.a.r.. Time $O(\Delta)$

$(1+\epsilon) \Delta$-coloring with $O(1 / \epsilon)$ exp. amortized update time

Current coloring stored in a table $c[\cdot]$.
Update algorithm after deleting (u, v)

- Do nothing

Update algorithm after adding (u, v)

- If $c[u] \neq c[v]$: do nothing.

Time $O(1)$

- If $c[u]=c[v]: \quad$ This case happen with proba. $\leq 1 / \epsilon \Delta$. $c(v) \leftarrow$ pick a color absent from $N(v)$ u.a.r.. Time $O(\Delta)$

When recoloring, the algorithm picks among at least $(1+\epsilon) \Delta-|N(v)| \geq \epsilon \Delta$ colors.

$(1+\epsilon) \Delta$-coloring with $O(1 / \epsilon)$ exp. amortized update time

Current coloring stored in a table $c[\cdot]$.
Update algorithm after deleting (u, v)

- Do nothing

Update algorithm after adding (u, v)

- If $c[u] \neq c[v]$: do nothing.
- If $c[u]=c[v]: \quad$ This case happen with proba. $\leq 1 / \epsilon \Delta$. $c(v) \leftarrow$ pick a color absent from $N(v)$ u.a.r.. Time $O(\Delta)$

When recoloring, the algorithm picks among at least $(1+\epsilon) \Delta-|N(v)| \geq \epsilon \Delta$ colors.

Setting $\epsilon=1 / \Delta$, we have a
$(\Delta+1)$-coloring with $O(\Delta)$ expected amortized update time.

Introduction
$(\Delta+1)$-coloring with $O(\log n)$ amortized update time Warmup
Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit \& deterministic $2^{O(\alpha)}$-coloring Implicit \& deterministic $O\left(\alpha^{2}\right)$-coloring

Idea for $(\Delta+1)$-coloring

When recoloring a vertex v : pick among $O(\Delta)$ colors.

- Maybe few vertices in $\{1, \ldots, \Delta+1\} \backslash c(N(v))$
- But in that case, many colors of $c(N(v))$ are used only once.

Idea for $(\Delta+1)$-coloring

When recoloring a vertex v : pick among $O(\Delta)$ colors.

- Maybe few vertices in $\{1, \ldots, \Delta+1\} \backslash c(N(v))$
- But in that case, many colors of $c(N(v))$ are used only once.
- Pick among the colors used at most once in $N(v)$, there are $\Delta / 2$.
- May create a "path of recolorings".
- How to bound the length of this path?

Tool : Hierarchical Partition

Partition of the vertices into levels.

- L levels: V_{1}, \ldots, V_{L}, with $L=\log _{\beta} \Delta$ for some $\beta>20$.
- Level of $v: \ell(v) \quad N^{<}(v)=\{u \in N(v) \mid \ell(u)<\ell(v)\}$

$$
N \leq(v)=\{u \in N(v) \mid \ell(u) \leq \ell(v)\}
$$

($\Delta+1$)-coloring algorithm based on hierarchical partition

$(\Delta+1)$-coloring : After an update $\pm(u, v)$

1) Insert(u,v) or Delete(u,v)
2) Maintain_HP() assume $\ell(v) \leq \ell(u)$ w.l.o.g.
3) If necessary (i.e. $+(u, v) \& c(u)=c(v))$: $\operatorname{Recolor}(v)$

$(\Delta+1)$-coloring algorithm based on hierarchical partition

($\Delta+1$)-coloring : After an update $\pm(u, v)$

1) Insert(u,v) or Delete(u,v)
2) Maintain_HP() assume $\ell(v) \leq \ell(u)$ w.l.o.g.
3) If necessary (i.e. $+(u, v) \& c(u)=c(v)): \operatorname{Recolor}(v)$

Recolor(v)

$c(v) \leftarrow$ Pick u.a.r. among colors used at most once in $N(v)$ \& not used in $N(v) \backslash N^{<}(v)$ If $\exists w \in N^{<}(v)$ s.t. $c(w)=c(v): \quad \operatorname{Recolor}(w)$

$(\Delta+1)$-coloring algorithm based on hierarchical partition

($\Delta+1$)-coloring : After an update $\pm(u, v)$

1) Insert(u,v) or Delete(u,v)
2) Maintain_HP() assume $\ell(v) \leq \ell(u)$ w.l.o.g.
3) If necessary (i.e. $+(u, v) \& c(u)=c(v)): \operatorname{Recolor}(v)$

Recolor(v)

$c(v) \leftarrow$ Pick u.a.r. among colors used at most once in $N(v)$ \& not used in $N(v) \backslash N^{<}(v)$ If $\exists w \in N^{<}(v)$ s.t. $c(w)=c(v): \quad \operatorname{Recolor}(w)$

- Among consecutive recolorings, the level decreases.

Maintaining the Hierarchical Partition (1)

Data structure

- Matrix E
- Doubly chained lists L_{i}

For every $v \in V$:

- $\ell(v)$
- $N^{<}(v)=\{u \in N(v) \mid \ell(u)<\ell(v)\} \quad \& \quad d^{<}(v)=\left|N^{<}(v)\right|$
- $N_{i}=N(v) \cap L_{i}$ and $d_{i}(v)=\left|N_{i}(v)\right| \quad \forall i$ s.t. $\ell(v) \leq i \leq L$.

For properties [Large $\left.N^{<}(v)\right] \&[$ Small $N \leq(v)]$

- $Q_{L} \& Q_{S}$: Queues with vertices violating these properties

Maintaining the Hierarchical Partition (2)

Insert(u,v)

- neighb $_{u} \leftarrow$ New_Neighbor (u)
- neighb ${ }_{v} \leftarrow$ New_Neighbor (v)
- $E[u, v] \leftarrow\left(T R U E\right.$, neighb $_{u}$, neighb $\left._{v}\right)$
- If $\ell(u) \geq \ell(v)$: then: $N_{\ell(u)}(v) \cdot \operatorname{add}\left(\right.$ neighb $\left._{u}\right), d_{\ell(u)}(v)++$ else: $\quad N^{<}(v)$.add $\left(\right.$ neighb $\left._{u}\right), d^{<}(v)++$
- If $d^{<}(v)+d_{\ell(v)}^{+}(v)>C \beta^{\ell(v)}$ then $Q_{S} \cdot \operatorname{push}(v)$
- If $\ell(v) \geq \ell(u)$:
then: $N_{\ell(v)}(u) \cdot \operatorname{add}\left(\right.$ neighb $\left._{v}\right), d_{\ell(v)}(u)++$
else: $\quad N^{<}(u)$.add $\left(\right.$ neighb $\left._{v}\right), d^{<}(u)++$
- If $d^{<}(u)+d_{\ell(u)}^{+}(u)>C \beta^{\ell(u)}$ then $Q_{S} \cdot \operatorname{push}(u)$

Maintaining the Hierarchical Partition (3)

Maintain_HP()

If Q_{S} is not empty, then

- $v \leftarrow Q_{s} \cdot \operatorname{pop}()$
- $k \leftarrow \min$. level $>\ell(v)$ s.t. $\sum_{i=1}^{k} d_{i}(v) \leq C \beta^{k}$
- Move v up to level k, and update data structure

Elseif Q_{L} is not empty, then
$-v \leftarrow Q_{L} \cdot \operatorname{pop}()$

- $k \leftarrow$ max. level $<\ell(v)$ s.t. $C \beta^{k-1} \leq \sum_{i=1}^{k-1} d_{i}(v) \quad$ or level 1
- Move v down to level k, and update data structure

Else return
Maintain_HP()

Maintaining the Hierarchical Partition (3)

Maintain_HP()

If Q_{S} is not empty, then
$-v \leftarrow Q_{S} \cdot \operatorname{pop}()$

- $k \leftarrow \min$. level $>\ell(v)$ s.t. $\sum_{i=1}^{k} d_{i}(v) \leq C \beta^{k}$
- Move v up to level k, and update data structure

Elseif Q_{L} is not empty, then

- $v \leftarrow Q_{L} \cdot \operatorname{pop}()$
$-k \leftarrow$ max. level $<\ell(v)$ s.t. $C \beta^{k-1} \leq \sum_{i=1}^{k-1} d_{i}(v) \quad$ or level 1
- Move v down to level k, and update data structure

Else return
Maintain_HP()

Property

In both cases we have $\beta^{k}<C \beta^{k-1} \leq d^{<}(v) \leq d \leq(v) \leq C \beta^{k}$

Maintaining the Hierarchical Partition (4)

GOAL: $O(\log \Delta)=O(L)$ amortized update time

Budget function

- $\operatorname{Budg}(u v)=L-\max (\ell(u), \ell(v))$
- $\operatorname{Budg}(v)=\frac{1}{2 \beta} \max \left(0, C \beta^{\ell(v)-1}-d^{<}(v)\right)$

Maintaining the Hierarchical Partition (4)

GOAL: $O(\log \Delta)=O(L)$ amortized update time

Budget function

- $\operatorname{Budg}(u v)=L-\max (\ell(u), \ell(v))$
- $\operatorname{Budg}(v)=\frac{1}{2 \beta} \max \left(0, C \beta^{\ell(v)-1}-d^{<}(v)\right)$

When adding an edge $u v$ the budget increase is:
$\Delta \operatorname{Budg}(u v)+\Delta B u d g(u)+\Delta B u d g(v) \leq+L-\frac{1}{2 \beta}-\frac{1}{2 \beta}<L$
When deleting an edge $u v$ the budget increase is:
$\Delta \operatorname{Budg}(u v)+\Delta \operatorname{Budg}(u)+\Delta B u d g(v) \leq 0+\frac{1}{2 \beta}+\frac{1}{2 \beta}<L$

Maintaining the Hierarchical Partition (4)

GOAL: $O(\log \Delta)=O(L)$ amortized update time

Budget function

- $\operatorname{Budg}(u v)=L-\max (\ell(u), \ell(v))$
- $\operatorname{Budg}(v)=\frac{1}{2 \beta} \max \left(0, C \beta^{\ell(v)-1}-d^{<}(v)\right)$

When adding an edge $u v$ the budget increase is:
$\Delta \operatorname{Budg}(u v)+\Delta B u d g(u)+\Delta B u d g(v) \leq+L-\frac{1}{2 \beta}-\frac{1}{2 \beta}<L$
When deleting an edge $u v$ the budget increase is:
$\Delta B u d g(u v)+\Delta B u d g(u)+\Delta B u d g(v) \leq 0+\frac{1}{2 \beta}+\frac{1}{2 \beta}<L$

Remaining to prove

One call to Maintain_HP () is done in time $O\left(\beta^{\max (\ell(v), k)}\right)$. Show that this is $O(-\Delta B u d g)$.

Maintaining the Hierarchical Partition (5)

Budget function

- $\operatorname{Budg}(u v)=L-\max (\ell(u), \ell(v))$
- $\operatorname{Budg}(v)=\frac{1}{2 \beta} \max \left(0, C \beta^{\ell(v)-1}-d^{<}(v)\right)$

Maintaining the Hierarchical Partition (5)

Budget function

- $\operatorname{Budg}(u v)=L-\max (\ell(u), \ell(v))$
- $\operatorname{Budg}(v)=\frac{1}{2 \beta} \max \left(0, C \beta^{\ell(v)-1}-d^{<}(v)\right)$

When moving up v from level $\ell(v)$ to k, the budget decrease is:

$$
\begin{aligned}
\Delta B u d g(v)+\sum_{u \in N(v)} \Delta B u d g(u v) & \geq 0+\sum_{u \in N(v)} \text { with } \ell(u)<k \\
& \frac{1}{2 \beta} \\
& \geq C \beta^{k-1} \frac{1}{2 \beta} \\
& \geq O\left(\beta^{\max (\ell(v), k)}\right)
\end{aligned}
$$

Maintaining the Hierarchical Partition (5)

Budget function

- $\operatorname{Budg}(u v)=L-\max (\ell(u), \ell(v))$
- $\operatorname{Budg}(v)=\frac{1}{2 \beta} \max \left(0, C \beta^{\ell(v)-1}-d^{<}(v)\right)$

When moving up v from level $\ell(v)$ to k, the budget decrease is:

$$
\begin{aligned}
\Delta B u d g(v)+\sum_{u \in N(v)} \Delta B u d g(u v) & \geq 0+\sum_{u \in N(v)} \text { with } \ell(u)<k \\
& \frac{1}{2 \beta} \\
& \geq C \beta^{k-1} \frac{1}{2 \beta} \\
& \geq O\left(\beta^{\max (\ell(v), k)}\right)
\end{aligned}
$$

When moving down v from level $\ell(v)$ to k : similar ;-)

Introduction

$(\Delta+1)$-coloring with $O(\log n)$ amortized update time Warmup Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit \& deterministic $2^{O(\alpha)}$-coloring
Implicit \& deterministic $O\left(\alpha^{2}\right)$-coloring

Introduction
$(\Delta+1)$-coloring with $O(\log n)$ amortized update time Warmup Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit \& deterministic $2^{O(\alpha)}$-coloring Implicit \& deterministic $O\left(\alpha^{2}\right)$-coloring

2-colorings of dynamic forests

3-colorings of dynamic forests
$n^{1 / 3}$ stars $S_{n^{2 / 3}}$

3-colorings of dynamic forests

3-colorings of dynamic forests

$n^{1 / 3}$ stars $S_{n^{2 / 3}}$

After $O\left(n^{1 / 3}\right)$ updates, either

- the thick stars remain 2-colored:

$$
O\left(n^{1 / 3}\right) \times O\left(n^{1 / 3}\right) \text { color changes. }
$$

- some thin star has gets a blue root:
$O\left(n^{2 / 3}\right)$ color changes at leaves.

Introduction
$(\Delta+1)$-coloring with $O(\log n)$ amortized update time Warmup Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings Implicit \& deterministic $2^{O(\alpha)}$-coloring
Implicit \& deterministic $O\left(\alpha^{2}\right)$-coloring

$O(\alpha)$-forest decomposition

Data structure

- Forests F_{1}, \ldots, F_{n}
- $\alpha^{*}=O(\alpha)$ s.t. $F_{i}=\emptyset \quad \forall i>\alpha^{*}$
- $\forall F_{i} \forall T \in F_{i}$ is a rooted.
- Query: Dist_To_Root (v, i)

$O(\alpha)$-forest decomposition

Data structure

- Forests F_{1}, \ldots, F_{n}
- $\alpha^{*}=O(\alpha)$ s.t. $F_{i}=\emptyset \quad \forall i>\alpha^{*}$
- $\forall F_{i} \forall T \in F_{i}$ is a rooted.
- Query: Dist_To_Root (v, i)
$O(\log n)$ time
Query: $\operatorname{Color}(v)$
return (...,DIST_TO_ROOT $(v, i) \bmod 2, \ldots$)

Introduction
$(\Delta+1)$-coloring with $O(\log n)$ amortized update time Warmup Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit \& deterministic $2^{O(\alpha)}$-coloring
Implicit \& deterministic $O\left(\alpha^{2}\right)$-coloring

Reducing to $O\left(\alpha^{4}\right)$ colors

α^{*}-out orientations
$\forall v \quad d^{+}(v) \leq \alpha^{*}$

Reducing to $O\left(\alpha^{4}\right)$ colors

α^{*}-out orientations

$\forall v \quad d^{+}(v) \leq \alpha^{*}$
r-cover free family
There exists a family \mathcal{S} of $2^{\alpha^{*}}$ subsets of $\left\{1, \ldots, \alpha^{* 4}\right\}$ such that:

- $\forall S \in \mathcal{S}$
- $\forall S_{1}, \ldots, S_{\alpha^{*}} \in \mathcal{S}$
- There is a color $c \in S \backslash\left(\cup S_{i}\right)$.

Reducing to $O\left(\alpha^{4}\right)$ colors

α^{*}-out orientations

$\forall v \quad d^{+}(v) \leq \alpha^{*}$
r-cover free family
There exists a family \mathcal{S} of $2^{\alpha^{*}}$ subsets of $\left\{1, \ldots, \alpha^{* 4}\right\}$ such that:

- $\forall S \in \mathcal{S}$
- $\forall S_{1}, \ldots, S_{\alpha^{*}} \in \mathcal{S}$
- There is a color $c \in S \backslash\left(\cup S_{i}\right)$.
$2^{\alpha^{*}}$-coloring c_{1}
$\Longrightarrow \alpha^{* 4}$-coloring c_{2}

Reducing to $O\left(\alpha^{4}\right)$ colors

α^{*}-out orientations

$\forall v \quad d^{+}(v) \leq \alpha^{*}$
r-cover free family
There exists a family \mathcal{S} of $2^{\alpha^{*}}$ subsets of $\left\{1, \ldots, \alpha^{* 4}\right\}$ such that:

- $\forall S \in \mathcal{S}$
- $\forall S_{1}, \ldots, S_{\alpha^{*}} \in \mathcal{S}$
- There is a color $c \in S \backslash\left(\cup S_{i}\right)$.
$2^{\alpha^{*}}$-coloring c_{1}
$\Longrightarrow \alpha^{* 4}$-coloring c_{2}
$\Longrightarrow \alpha^{* 2}$-coloring c_{3}

Thank you !

