### Dynamic graphs & vertex coloring

#### Daniel Gonçalves, LIRMM, Univ. Montpellier & CNRS

#### JCRAALMA, 15th January 2024 based on

[BCHN18] Dynamic algorithms for graph coloring, by Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai, SODA 2018.

[BCK+19] *Dynamic graph coloring*, by Luis Barba, Jean Cardinal, Matias Korman, Stefan Langerman, André van Renssen, Marcel Roeloffzen, and Sander Verdonschot, Algorithmica, 2019.

[HNW20] Explicit and implicit dynamic coloring of graphs with bounded arboricity, by Monika Henzinger, Stefan Neumann, and Andreas Wiese, ArXiv 2020.

[CNR23] *Improved Dynamic Colouring of Sparse Graphs*, by Aleksander B.G. Christiansen, Krzysztof Nowicki, and Eva Rotenberg, STOC 2023.

#### Introduction

#### $(\Delta + 1)$ -coloring with $O(\log n)$ amortized update time Warmup Algorithm with *Hierarchical Partition*

#### Coloring with arboricity $\alpha$

Limits of explicit colorings Implicit & deterministic  $2^{O(\alpha)}$ -coloring Implicit & deterministic  $O(\alpha^2)$ -coloring

#### Introduction

# $(\Delta + 1)$ -coloring with $O(\log n)$ amortized update time Warmup

Algorithm with Hierarchical Partition

#### Coloring with arboricity $\alpha$

Limits of explicit colorings Implicit & deterministic  $2^{O(\alpha)}$ -coloring Implicit & deterministic  $O(\alpha^2)$ -coloring

# Dynamic graph

#### Dynamic graph G:

- A fixed vertex set V, with n = |V|.
- ▶ A sequence of updates (edge additions/deletions):  $(\pm e_i)_{1 \le i \le t}$

Initially, the edge set is empty : E<sub>0</sub> = Ø.
If the *i*<sup>th</sup> update is a +e<sub>i</sub>, then E<sub>i</sub> = E<sub>i-1</sub> ∪ {e<sub>i</sub>}.
If the *i*<sup>th</sup> update is a -e<sub>i</sub>, then E<sub>i</sub> = E<sub>i-1</sub> \ {e<sub>i</sub>}.

 $\implies$  a sequence of graphs:  $((V, E_i))_{0 \le i \le t}$ 

## Dynamic graph

#### Dynamic graph G:

- A fixed vertex set V, with n = |V|.
- ▶ A sequence of updates (edge additions/deletions):  $(\pm e_i)_{1 \le i \le t}$
- Initially, the edge set is empty : E<sub>0</sub> = Ø.
  If the *i*<sup>th</sup> update is a +e<sub>i</sub>, then E<sub>i</sub> = E<sub>i-1</sub> ∪ {e<sub>i</sub>}.
  If the *i*<sup>th</sup> update is a -e<sub>i</sub>, then E<sub>i</sub> = E<sub>i-1</sub> \ {e<sub>i</sub>}.

 $\implies$  a sequence of graphs:  $((V, E_i))_{0 \le i \le t}$ 

#### Combinatorial Problem $\Pi$

- We want solutions of  $\Pi$  for the graphs  $(V, E_i)$ .
- Computing a solution for (V, E<sub>i</sub>), should be easier given a solution of (V, E<sub>i-1</sub>).

- Given a preset sequence of updates
- Start with a solution  $Sol_0 \in \Pi((V, E_0))$ .
- ▶ Goal: correct *Sol*<sub>0</sub> after *i* updates to obtain *Sol*<sub>*i*</sub>.

- Given a preset sequence of updates (oblivious adversary).
- Start with a solution  $Sol_0 \in \Pi((V, E_0))$ .
- ▶ Goal: correct *Sol*<sub>0</sub> after *i* updates to obtain *Sol*<sub>*i*</sub>.

- Given a preset sequence of updates (oblivious adversary).
- Start with a solution  $Sol_0 \in \Pi((V, E_0))$ .
- ▶ Goal: correct *Sol*<sub>0</sub> after *i* updates to obtain *Sol*<sub>*i*</sub>. Two ways:
  - Explicitly: a current solution is stored in memory. Update the solution (Sol<sub>i−1</sub> → Sol<sub>i</sub>) so that Sol<sub>i</sub> ∈ Π(V, E<sub>i</sub>).
  - Implicitly: a solution can be retrieved from queries.

- Given a preset sequence of updates (oblivious adversary).
- Start with a solution  $Sol_0 \in \Pi((V, E_0))$ .
- ▶ Goal: correct *Sol*<sub>0</sub> after *i* updates to obtain *Sol*<sub>*i*</sub>. Two ways:
  - **Explicitly**: a current solution is stored in memory. Update the solution  $(Sol_{i-1} \rightarrow Sol_i)$  so that  $Sol_i \in \Pi(V, E_i)$ .
  - Implicitly: a solution can be retrieved from queries.

### Time complexity measures

Case of explicit algorithms

Time complexity **per update**.

It can be

**Worst-case**: maximum complexity for  $Sol_{i-1} \longrightarrow Sol_i$ ,

or

**Amortized**: Complexity(Sol<sub>0</sub>  $\longrightarrow$  Sol<sub>t</sub>) / t for a suff. large t.

### Time complexity measures

Case of explicit algorithms

Time complexity per update.
 It can be
 Worst-case: maximum complexity for Sol<sub>i-1</sub> → Sol<sub>i</sub>, or

**Amortized**: Complexity(Sol<sub>0</sub>  $\longrightarrow$  Sol<sub>t</sub>) / t for a suff. large t.

#### Case of implicit algorithms

Twofold complexity: per update & per query. Also, worst-case/amortized options.

### Time complexity measures

Case of explicit algorithms

Time complexity per update.
 It can be
 Worst-case: maximum complexity for Sol<sub>i-1</sub> → Sol<sub>i</sub>, or

**Amortized**: Complexity(Sol<sub>0</sub>  $\longrightarrow$  Sol<sub>t</sub>) / t for a suff. large t.

#### Case of implicit algorithms

Twofold complexity: per update & per query. Also, worst-case/amortized options.

For **randomized algorithms**, the measures can be weakened : e.g. provided in expectation, or with high probability.

### Coloring with respect to $\Delta$ or the arboricity $\alpha$

Brooks theorem

$$\chi(G) \leq \Delta + 1$$

Arboricity  $\alpha(G)$ 

•  $\alpha(G)$ : min k s.t. G decomposes into k forests.

### Coloring with respect to $\Delta$ or the arboricity lpha

Brooks theorem

$$\chi(G) \leq \Delta + 1$$

### Arboricity $\alpha(G)$

•  $\alpha(G)$  : min k s.t. G decomposes into k forests.

• Every graph G has at most  $\alpha(G) \times (n-1)$  edges.

### Coloring with respect to $\Delta$ or the arboricity lpha

#### Brooks theorem

$$\chi(G) \leq \Delta + 1$$

### Arboricity $\alpha(G)$

- $\alpha(G)$ : min k s.t. G decomposes into k forests.
- Every graph G has at most  $\alpha(G) \times (n-1)$  edges.
- Every graph G is  $(2\alpha(G) 1)$ -degenerate.

### Coloring with respect to $\Delta$ or the arboricity lpha

#### Brooks theorem

$$\chi(G) \leq \Delta + 1$$

### Arboricity $\alpha(G)$

- $\alpha(G)$  : min k s.t. G decomposes into k forests.
- Every graph G has at most  $\alpha(G) \times (n-1)$  edges.
- Every graph G is  $(2\alpha(G) 1)$ -degenerate.

 $\chi(G) \leq 2\alpha(G)$ 

### Explicit ( $\Delta + 1$ )-coloring

•  $O(\log \Delta)$  expected amortized update time

[BCHN18]

### Explicit $(\Delta + 1)$ -coloring

•  $O(\log \Delta)$  expected amortized update time

### $f(\alpha, n)$ -colorings

Explicit O(α log n)-coloring, with
 O(log<sup>2</sup> n) expected amortized update time.

[HNW20]

[BCHN18]

### Explicit $(\Delta + 1)$ -coloring • $O(\log \Delta)$ expected amortized update time [BCHN18] $f(\alpha, n)$ -colorings Explicit $O(\alpha \log n)$ -coloring, with $O(\log^2 n)$ expected amortized update time. [HNW20] For explicit $f(\alpha)$ -coloring, the update time is $\Omega(poly(n))$ . [BCK+19]

#### Explicit $(\Delta + 1)$ -coloring $\triangleright$ $O(\log \Delta)$ expected amortized update time [BCHN18] $f(\alpha, n)$ -colorings Explicit $O(\alpha \log n)$ -coloring, with $O(\log^2 n)$ expected amortized update time. [HNW20] For explicit $f(\alpha)$ -coloring, the update time is $\Omega(poly(n))$ . [BCK+19] lmplicit & deterministic $2^{O(\alpha)}$ -coloring, with $O(\log^3 n)$ amortized update time, and $O(\alpha \log n)$ query time. [HNW20]

#### Explicit $(\Delta + 1)$ -coloring • $O(\log \Delta)$ expected amortized update time [BCHN18] $f(\alpha, n)$ -colorings Explicit $O(\alpha \log n)$ -coloring, with $O(\log^2 n)$ expected amortized update time. [HNW20] For explicit $f(\alpha)$ -coloring, the update time is $\Omega(poly(n))$ . [BCK+19] lmplicit & deterministic $2^{O(\alpha)}$ -coloring, with $O(\log^3 n)$ amortized update time, and $O(\alpha \log n)$ query time. [HNW20] lmplicit & deterministic $O(\alpha^2)$ -coloring, with $O(\log \alpha \log^3 n)$ worst-case update time, and $O(\alpha^5 \log n)$ query time. [CNR23]

#### Introduction

#### $(\Delta + 1)$ -coloring with $O(\log n)$ amortized update time Warmup Algorithm with *Hierarchical Partition*

#### Coloring with arboricity $\alpha$

Limits of explicit colorings Implicit & deterministic  $2^{O(\alpha)}$ -coloring Implicit & deterministic  $O(\alpha^2)$ -coloring

#### Introduction

### $(\Delta + 1)$ -coloring with $O(\log n)$ amortized update time Warmup

Algorithm with Hierarchical Partition

#### Coloring with arboricity $\alpha$

Limits of explicit colorings Implicit & deterministic  $2^{O(\alpha)}$ -coloring Implicit & deterministic  $O(\alpha^2)$ -coloring

# $2\Delta$ -coloring with O(1) expected amortized update time

Current coloring stored in a table  $c[\cdot]$ .

Update algorithm after deleting (u, v)

Do nothing

Update algorithm after adding (u, v)

### $2\Delta$ -coloring with O(1) expected amortized update time

Current coloring stored in a table  $c[\cdot]$ .

Update algorithm after deleting (u, v)

Do nothing

Time O(1)

Update algorithm after adding (u, v)

### $2\Delta$ -coloring with O(1) expected amortized update time

Neighborhoods stored with two tables  $N[\cdot]$  and  $E[\cdot, \cdot]$ .



Update algorithm after deleting (u, v)

Remove 
$$u$$
 from  $N(v) \& v$  from  $N(u)$ 

Time O(1)

#### Update algorithm after adding (u, v)

 Add u in N(v) & v in N(u) Time O(1)
 If c[u] ≠ c[v]: do nothing. Time O(1)
 If c[u] = c[v]: This case happen with proba. ≤ 1/Δ. c(v) ← pick a color absent from N(v) u.a.r.. Time O(Δ)  $(1+\epsilon)\Delta$ -coloring with  $O(1/\epsilon)$  exp. amortized update time

Current coloring stored in a table  $c[\cdot]$ .

Update algorithm after deleting (u, v)

Do nothing

Time O(1)

Update algorithm after adding (u, v)

 If c[u] ≠ c[v]: do nothing. Time O(1)
 If c[u] = c[v]: This case happen with proba. ≤ 1/εΔ. c(v) ← pick a color absent from N(v) u.a.r.. Time O(Δ)

When recoloring, the algorithm picks among at least  $(1 + \epsilon)\Delta - |N(v)| \ge \epsilon\Delta$  colors.

 $(1+\epsilon)\Delta$ -coloring with  $O(1/\epsilon)$  exp. amortized update time

Current coloring stored in a table  $c[\cdot]$ .

Update algorithm after deleting (u, v)

Do nothing

Time O(1)

Update algorithm after adding (u, v)

 If c[u] ≠ c[v]: do nothing. Time O(1)
 If c[u] = c[v]: This case happen with proba. ≤ 1/εΔ. c(v) ← pick a color absent from N(v) u.a.r.. Time O(Δ)

When recoloring, the algorithm picks among at least  $(1 + \epsilon)\Delta - |N(v)| \ge \epsilon\Delta$  colors.

Setting  $\epsilon = 1/\Delta$ , we have a  $(\Delta + 1)$ -coloring with  $O(\Delta)$  expected amortized update time.

#### Introduction

#### $(\Delta + 1)$ -coloring with $O(\log n)$ amortized update time Warmup Algorithm with *Hierarchical Partition*

#### Coloring with arboricity $\alpha$

Limits of explicit colorings Implicit & deterministic  $2^{O(\alpha)}$ -coloring Implicit & deterministic  $O(\alpha^2)$ -coloring When recoloring a vertex v: pick among  $O(\Delta)$  colors.

- Maybe few vertices in  $\{1, \ldots, \Delta + 1\} \setminus c(N(v))$
- But in that case, many colors of c(N(v)) are used only once.

When recoloring a vertex v: pick among  $O(\Delta)$  colors.

- Maybe few vertices in  $\{1, \ldots, \Delta + 1\} \setminus c(N(v))$
- But in that case, many colors of c(N(v)) are used only once.
- Pick among the colors used at most once in N(v), there are Δ/2.
- ► May create a "path of recolorings".
- How to bound the length of this path?

## Tool : Hierarchical Partition

### Partition of the vertices into levels.

• L levels: 
$$V_1, \ldots, V_L$$
, with  $L = \log_{\beta} \Delta$  for some  $\beta > 20$ .

► Level of v: 
$$\ell(v)$$
  
 $N^{<}(v) = \{u \in N(v) \mid \ell(u) < \ell(v)\}$   
 $N^{\leq}(v) = \{u \in N(v) \mid \ell(u) \le \ell(v)\}$ 

$$\begin{array}{ll} [\mathsf{Large} \ N^{<}(v)]: & |N^{<}(v)| \geq \beta^{\ell(v)} & \forall v \in V \text{ unless } \ell(v) = 0. \\ [\mathsf{Small} \ N^{\leq}(v)]: & C\beta^{\ell(v)} \geq |N^{\leq}(v)| \end{array}$$

# $(\Delta + 1)$ -coloring algorithm based on hierarchical partition

### $(\Delta + 1)$ -coloring : After an update $\pm(u, v)$

1) Insert(u,v) or Delete(u,v) 2) Maintain\_HP() assume  $\ell(v) \le \ell(u)$  w.l.o.g. 3) If necessary (i.e. +(u, v) & c(u) = c(v)) : RECOLOR(v)

# $(\Delta + 1)$ -coloring algorithm based on hierarchical partition

### $(\Delta + 1)$ -coloring : After an update $\pm(u, v)$

1) Insert(u,v) or Delete(u,v) 2) Maintain\_HP() assume  $\ell(v) \leq \ell(u)$  w.l.o.g. 3) If necessary (i.e. +(u, v) & c(u) = c(v)) : RECOLOR(v)

### $\operatorname{Recolor}(v)$

 $\begin{array}{l} c(v) \leftarrow \mbox{Pick u.a.r. among colors used at most once in } N(v) \\ & \& \mbox{ not used in } N(v) \setminus N^<(v) \\ \mbox{If } \exists w \in N^<(v) \mbox{ s.t. } c(w) = c(v) : & \mbox{Recolor}(w) \end{array}$ 

# $(\Delta + 1)$ -coloring algorithm based on hierarchical partition

### $(\Delta + 1)$ -coloring : After an update $\pm(u, v)$

1) Insert(u,v) or Delete(u,v) 2) Maintain\_HP() assume  $\ell(v) \leq \ell(u)$  w.l.o.g. 3) If necessary (i.e. +(u, v) & c(u) = c(v)) : RECOLOR(v)

### $\operatorname{Recolor}(v)$

$$\begin{split} c(v) &\leftarrow \text{Pick u.a.r. among colors used at most once in } N(v) \\ & \& \text{ not used in } N(v) \setminus N^{<}(v) \\ \text{If } \exists w \in N^{<}(v) \text{ s.t. } c(w) = c(v) : & \text{Recolor}(w) \end{split}$$

Among consecutive recolorings, the level decreases.

### Maintaining the Hierarchical Partition (1)



### Maintaining the Hierarchical Partition (2)

### Insert(u,v)

- ▶ neighb<sub>*u*</sub> ← New\_Neighbor(*u*)
- ▶ neighb<sub>v</sub> ← New\_Neighbor(v)
- $E[u, v] \leftarrow (TRUE, neighb_u, neighb_v)$

▶ If 
$$\ell(u) \ge \ell(v)$$
:  
then:  $N_{\ell(u)}(v)$ .add(neighb<sub>u</sub>),  $d_{\ell(u)}(v) + +$   
else:  $N^{<}(v)$ .add(neighb<sub>u</sub>),  $d^{<}(v) + +$ 

▶ If  $d^{<}(v) + d^{+}_{\ell(v)}(v) > C\beta^{\ell(v)}$  then  $Q_{S}.\mathsf{push}(v)$ 

### Maintaining the Hierarchical Partition (3)

### Maintain\_HP()

If  $Q_S$  is not empty, then

- ▶  $v \leftarrow Q_{S}.pop()$
- $k \leftarrow \min$ . level  $> \ell(v)$  s.t.  $\sum_{i=1}^k d_i(v) \le C\beta^k$

• Move v up to level k, and update data structure Elseif  $Q_L$  is not empty, then

- ▶  $v \leftarrow Q_L.pop()$
- ▶  $k \leftarrow \max$ . level  $< \ell(v)$  s.t.  $C\beta^{k-1} \le \sum_{i=1}^{k-1} d_i(v)$  or level 1

Move v down to level k, and update data structure

Else return

 $Maintain_HP()$ 

### Maintaining the Hierarchical Partition (3)

### $Maintain_HP()$

If  $Q_S$  is not empty, then

- ▶  $v \leftarrow Q_{S}.pop()$
- $k \leftarrow \min$ . level  $> \ell(v)$  s.t.  $\sum_{i=1}^{k} d_i(v) \le C\beta^k$

• Move v up to level k, and update data structure Elseif  $Q_L$  is not empty, then

- ▶  $v \leftarrow Q_L.pop()$
- ▶  $k \leftarrow \max$ . level  $< \ell(v)$  s.t.  $C\beta^{k-1} \le \sum_{i=1}^{k-1} d_i(v)$  or level 1

Move v down to level k, and update data structure

Else return MAINTAIN\_HP()

#### Property

In both cases we have  $eta^k < Ceta^{k-1} \leq d^<(v) \leq d^\leq(v) \leq Ceta^k$ 

### Maintaining the Hierarchical Partition (4)

GOAL:  $O(\log \Delta) = O(L)$  amortized update time

Budget function

• 
$$Budg(uv) = L - \max(\ell(u), \ell(v))$$

• 
$$Budg(v) = \frac{1}{2\beta} \max\left(0, C\beta^{\ell(v)-1} - d^{<}(v)\right)$$

### Maintaining the Hierarchical Partition (4)

GOAL:  $O(\log \Delta) = O(L)$  amortized update time

Budget function

$$Budg(uv) = L - \max(\ell(u), \ell(v))$$

• 
$$Budg(v) = \frac{1}{2\beta} \max\left(0, C\beta^{\ell(v)-1} - d^{<}(v)\right)$$

When adding an edge uv the budget increase is:  $\Delta Budg(uv) + \Delta Budg(u) + \Delta Budg(v) \le +L - \frac{1}{2\beta} - \frac{1}{2\beta} < L$ 

When deleting an edge uv the budget increase is:  $\Delta Budg(uv) + \Delta Budg(u) + \Delta Budg(v) \le 0 + \frac{1}{2\beta} + \frac{1}{2\beta} < L$ 

### Maintaining the Hierarchical Partition (4)

GOAL:  $O(\log \Delta) = O(L)$  amortized update time

Budget function

• 
$$Budg(uv) = L - \max(\ell(u), \ell(v))$$

• 
$$Budg(v) = \frac{1}{2\beta} \max\left(0, C\beta^{\ell(v)-1} - d^{<}(v)\right)$$

When adding an edge uv the budget increase is:  $\Delta Budg(uv) + \Delta Budg(u) + \Delta Budg(v) \le +L - \frac{1}{2\beta} - \frac{1}{2\beta} < L$ 

When deleting an edge uv the budget increase is:  $\Delta Budg(uv) + \Delta Budg(u) + \Delta Budg(v) \le 0 + \frac{1}{2\beta} + \frac{1}{2\beta} < L$ 

#### Remaining to prove

One call to MAINTAIN\_HP() is done in time  $O(\beta^{\max(\ell(v),k)})$ . Show that this is  $O(-\Delta Budg)$ .

### Maintaining the Hierarchical Partition (5)

### Budget function

• 
$$Budg(uv) = L - max(\ell(u), \ell(v))$$

• 
$$Budg(v) = \frac{1}{2\beta} \max(0, C\beta^{\ell(v)-1} - d^{<}(v))$$

### Maintaining the Hierarchical Partition (5)

#### Budget function

• 
$$Budg(uv) = L - \max(\ell(u), \ell(v))$$

• 
$$Budg(v) = \frac{1}{2\beta} \max\left(0, C\beta^{\ell(v)-1} - d^{<}(v)\right)$$

When moving up v from level  $\ell(v)$  to k, the budget decrease is:

-

$$\begin{split} \Delta Budg(v) + \sum_{u \in N(v)} \Delta Budg(uv) &\geq 0 + \sum_{u \in N(v) \text{ with } \ell(u) < k} \frac{1}{2\beta} \\ &\geq C\beta^{k-1} \frac{1}{2\beta} \\ &\geq O(\beta^{\max(\ell(v),k)}) \end{split}$$

### Maintaining the Hierarchical Partition (5)

#### Budget function

• 
$$Budg(uv) = L - \max(\ell(u), \ell(v))$$

• 
$$Budg(v) = \frac{1}{2\beta} \max\left(0, C\beta^{\ell(v)-1} - d^{<}(v)\right)$$

When moving up v from level  $\ell(v)$  to k, the budget decrease is:

$$egin{aligned} \Delta Budg(v) + \sum_{u \in \mathcal{N}(v)} \Delta Budg(uv) &\geq 0 + \sum_{u \in \mathcal{N}(v) ext{ with } \ell(u) < k} rac{1}{2eta} \ &\geq & Ceta^{k-1}rac{1}{2eta} \ &\geq & O(eta^{ ext{max}(\ell(v),k)}) \end{aligned}$$

When **moving down** v from level  $\ell(v)$  to k: similar ;-)

#### Introduction

### $(\Delta + 1)$ -coloring with $O(\log n)$ amortized update time Warmup Algorithm with *Hierarchical Partition*

#### Coloring with arboricity $\alpha$

Limits of explicit colorings Implicit & deterministic  $2^{O(\alpha)}$ -coloring Implicit & deterministic  $O(\alpha^2)$ -coloring

#### Introduction

### $(\Delta + 1)$ -coloring with $O(\log n)$ amortized update time

Warmup Algorithm with *Hierarchical Partition* 

#### Coloring with arboricity $\alpha$

#### Limits of explicit colorings

Implicit & deterministic  $2^{O(\alpha)}$ -coloring Implicit & deterministic  $O(\alpha^2)$ -coloring



n's stars Snevs









After  $O(n^{1/3})$  updates, either

the thick stars remain 2-colored:

 $O(n^{1/3}) \times O(n^{1/3})$  color changes.

some thin star has gets a blue root:

 $O(n^{2/3})$  color changes at leaves.

#### Introduction

### $(\Delta + 1)$ -coloring with $O(\log n)$ amortized update time

Warmup Algorithm with *Hierarchical Partition* 

Coloring with arboricity  $\alpha$ 

Limits of explicit colorings Implicit & deterministic  $2^{O(\alpha)}$ -coloring Implicit & deterministic  $O(\alpha^2)$ -coloring

## $O(\alpha)$ -forest decomposition

#### Data structure

Forests 
$$F_1, \ldots, F_n$$

• 
$$\alpha^* = O(\alpha)$$
 s.t.  $F_i = \emptyset \ \forall i > lpha^*$ 

- ▶  $\forall F_i \forall T \in F_i$  is a rooted.
- Query : DIST\_TO\_ROOT(v, i)



# $O(\alpha)$ -forest decomposition

#### Data structure

Forests 
$$F_1, \ldots, F_n$$

• 
$$\alpha^* = O(\alpha)$$
 s.t.  $F_i = \emptyset \ \forall i > lpha^*$ 

 $\blacktriangleright \forall F_i \ \forall T \in F_i \text{ is a rooted.}$ 

**•** Query : DIST\_TO\_ROOT(v, i)

#### $O(\log n)$ time

### Query: COLOR(v)

return (...,DIST\_TO\_ROOT(v, i) mod 2,...)

#### Introduction

### $(\Delta + 1)$ -coloring with $O(\log n)$ amortized update time

Warmup Algorithm with *Hierarchical Partition* 

#### Coloring with arboricity $\alpha$

Limits of explicit colorings Implicit & deterministic  $2^{O(\alpha)}$ -coloring Implicit & deterministic  $O(\alpha^2)$ -coloring

# Reducing to $\mathcal{O}(\alpha^4)$ colors

 $\alpha^*\text{-}\mathsf{out}$  orientations

$$\forall v \quad d^+(v) \leq \alpha^*$$

# Reducing to $O(\alpha^4)$ colors

 $\alpha^*$ -out orientations  $\forall v \quad d^+(v) \leq \alpha^*$ 

#### *r*-cover free family

There exists a family S of  $2^{\alpha^*}$  subsets of  $\{1, \ldots, \alpha^{*4}\}$  such that:

 $\blacktriangleright \forall S \in S$ 

$$\blacktriangleright \forall S_1,\ldots,S_{\alpha^*} \in S$$

• There is a color 
$$c \in S \setminus (\cup S_i)$$
.

# Reducing to $O(\alpha^4)$ colors

 $\alpha^*$ -out orientations  $\forall v \quad d^+(v) \le \alpha^*$ 

#### *r*-cover free family

There exists a family S of  $2^{\alpha^*}$  subsets of  $\{1, \ldots, \alpha^{*4}\}$  such that:

$$\forall \ S \in S$$

$$\blacktriangleright \forall S_1,\ldots,S_{\alpha^*} \in S$$

• There is a color 
$$c \in S \setminus (\cup S_i)$$
.

$$2^{\alpha^*}$$
-coloring  $c_1$   
 $\implies \alpha^{*4}$ -coloring  $c_2$ 

# Reducing to $O(\alpha^4)$ colors

 $\alpha^*$ -out orientations  $\forall v \quad d^+(v) \leq \alpha^*$ 

#### *r*-cover free family

There exists a family S of  $2^{\alpha^*}$  subsets of  $\{1, \ldots, \alpha^{*4}\}$  such that:

$$\forall \ S \in S$$

$$\blacktriangleright \forall S_1,\ldots,S_{\alpha^*} \in S$$

• There is a color 
$$c \in S \setminus (\cup S_i)$$
.

$$2^{\alpha^*}$$
-coloring  $c_1$   
 $\implies \alpha^{*4}$ -coloring  $c_2$ 

 $\implies \alpha^{*2}$ -coloring  $c_3$ 

# Thank you !