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Dynamic graph

Dynamic graph G:

> A fixed vertex set V, with n = |V/]|.
> A sequence of updates (edge additions/deletions): (&e;);<;,

» Initially, the edge set is empty : Eg = 0.
> If the i*h update is a +e;, then E; = E;_; U {e;}.
> If the /" update is a —e;, then E; = E;_1 \ {e;}.

= a sequence of graphs: ((V, E))o<;<;
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Dynamic graph G:

> A fixed vertex set V, with n = |V/]|.
> A sequence of updates (edge additions/deletions): (&e;);<;,

» Initially, the edge set is empty : Eg = 0.
> If the i*h update is a +e;, then E; = E;_; U {e;}.
> If the /" update is a —e;, then E; = E;_1 \ {e;}.

— a sequence of graphs: ((V, Ej))o<i<,

Combinatorial Problem [1

» We want solutions of I for the graphs (V, E;).

» Computing a solution for (V/, E;), should be easier given a
solution of (V, E;_1).
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Updating a solution (for some problem I1) while G evolves

» Given a preset sequence of updates
» Start with a solution Soly € MN((V, Eo)).
» Goal: correct Soly after i updates to obtain Sol;.
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Updating a solution (for some problem I1) while G evolves

> Given a preset sequence of updates (oblivious adversary).
» Start with a solution Soly € MN((V, Eo)).

» Goal: correct Soly after i updates to obtain Sol;. Two ways:

» Explicitly: a current solution is stored in memory.
Update the solution (Sol;_; — Sol;) so that Sol; € M(V, E;).
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Time complexity measures

Case of explicit algorithms

> Time complexity per update.
It can be
Worst-case: maximum complexity for Sol;_1 — Sol;,
or
Amortized: Complexity(Soly — Sol;) / t for a suff. large t.
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Time complexity measures

Case of explicit algorithms

> Time complexity per update.
It can be
Worst-case: maximum complexity for Sol;_1 — Sol;,
or
Amortized: Complexity(Soly — Sol;) / t for a suff. large t.

Case of implicit algorithms

> Twofold complexity: per update & per query.
Also, worst-case/amortized options.

For randomized algorithms, the measures can be weakened : e.g.
provided in expectation, or with high probability.
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Coloring with respect to A or the arboricity «

Brooks theorem

X(G)<A+1

Arboricity a(G)

» a(G) : min k s.t. G decomposes into k forests.
» Every graph G has at most a(G) x (n — 1) edges.
» Every graph G is (2a(G) — 1)-degenerate.

x(G) < 2a(G)
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Explicit (A + 1)-coloring

» O(log A) expected amortized update time

f(c, n)-colorings

» Explicit O(«log n)-coloring, with
O(log? n) expected amortized update time.
» For explicit f(«)-coloring,
the update time is Q(poly(n)).
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Colorings in dynamic graphs

Explicit (A + 1)-coloring

| 2

O(log A) expected amortized update time

f(c, n)-colorings

>

| 2

Explicit O(« log n)-coloring, with

O(log? n) expected amortized update time.
For explicit f(a)-coloring,

the update time is Q(poly(n)).

Implicit & deterministic 29(®)-coloring, with
O(log® n) amortized update time, and
O(alog n) query time.

Implicit & deterministic O(a?)-coloring, with
O(log o log® n) worst-case update time, and
O(a”® log n) query time.

[BCHN18]

[HNW20]

[BCK+19]

[HNW20]

[CNR23]
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2A-coloring with O(1) expected amortized update time

Current coloring stored in a table c[-].
Update algorithm after deleting (u, v)

» Do nothing

Update algorithm after adding (u, v)

» If c[u] # c[v]: do nothing.
> If clu] = c[v]:
c(v) < pick a color absent from N(v) u.a.r..
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2A-coloring with O(1) expected amortized update time

Neighborhoods stored with two tables N[-] and E[,].
S FTELY
b e 51T i_:_';’l;
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Update algorithm after deleting (u, v)
» Remove u from N(v) & v from N(u) Time O(1)
Update algorithm after adding (u, v)
» Add v in N(v) & v in N(u) Time O(1)
» If c[u] # c[v]: do nothing. Time O(1)
> If c[u] = c[v]: This case happen with proba. < 1/A.

c(v) <« pick a color absent from N(v) u.a.r.. Time O(A)



(1 + ¢)A-coloring with O(1/¢) exp. amortized update time

Current coloring stored in a table c[-].
Update algorithm after deleting (u, v)

» Do nothing Time O(1)

Update algorithm after adding (u, v)

» If c[u] # c[v]: do nothing. Time O(1)
> If clu] = c|v]: This case happen with proba. < 1/eA.
c(v) < pick a color absent from N(v) u.a.r..  Time O(A)

When recoloring,
the algorithm picks among at least (1 + ¢)A — |[N(v)| > eA colors.



(1 + ¢)A-coloring with O(1/¢) exp. amortized update time

Current coloring stored in a table c[-].
Update algorithm after deleting (u, v)

» Do nothing Time O(1)

Update algorithm after adding (u, v)

» If c[u] # c[v]: do nothing. Time O(1)
> If clu] = c|v]: This case happen with proba. < 1/eA.
c(v) < pick a color absent from N(v) u.a.r..  Time O(A)

When recoloring,
the algorithm picks among at least (1 + ¢)A — |[N(v)| > eA colors.

Setting ¢ = 1/A, we have a
(A + 1)-coloring with O(A) expected amortized update time.
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Idea for (A + 1)-coloring

When recoloring a vertex v : pick among O(A) colors.
» Maybe few vertices in {1,..., A+ 1} \ c¢(N(v))

» But in that case, many colors of c(N(v)) are used only once.



Idea for (A + 1)-coloring

When recoloring a vertex v : pick among O(A) colors.
» Maybe few vertices in {1,..., A+ 1} \ c¢(N(v))

» But in that case, many colors of c(N(v)) are used only once.

» Pick among the colors used at most once in N(v), there are
A)2.

» May create a " path of recolorings”.

How to bound the length of this path?

v



Tool : Hierarchical Partition

Partition of the vertices into levels.

> L levels: Vq,..., V|, with L =logg A for some 8 > 20.
> Level of v: {(v) N<(v) ={ue N(v) | {(u) < £(v)}
N=(v) = {u € N(v) | £(u) < £(v)}

[Large N<(V)] : ’N<(V)’ > BZ(V) Vv € V unless £(v) = 0.
[Small N=(v)] : CBUY) > |NS(v))|



(A + 1)-coloring algorithm based on hierarchical partition

(A + 1)-coloring : After an update +(u, v)

1) Insert(u,v) or Delete(u,v)
2) Maintain_HP() assume £(v) < ¢(u) w.l.o.g.
3) If necessary (i.e. +(u,v) & c(u) =c(v)) : RECOLOR(v)
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(A + 1)-coloring algorithm based on hierarchical partition

(A + 1)-coloring : After an update +(u, v)

1) Insert(u,v) or Delete(u,v)
2) Maintain_HP() assume £(v) < ¢(u) w.l.o.g.
3) If necessary (i.e. +(u,v) & c(u) =c(v)) : RECOLOR(v)

RECOLOR(V)

c(v) < Pick u.a.r. among colors used at most once in N(v)
& not used in N(v)\ N<(v)
If 3w € N<(v) s.t. ¢(w)=c(v): RECOLOR(w)

> Among consecutive recolorings, the level decreases.



Maintaining the Hierarchical Partition (1)

Data structure

> Matrix E
» Doubly chained lists L; Vi

For every v € V:

> {(v)
> N<(v) = {u € N(v) | ) < €V} & d<(v) = [N<(v)
> N; = N(v)NL;and di(v) = |N;(v)| Vist. f(v) <i<L.

For properties [Large N<(v)] & [Small N=(v)]
> Q; & Qs: Queues with vertices violating these properties



Maintaining the Hierarchical Partition (2)

Insert(u,v)

>
>
>

neighb, < New_Neighbor(u)
neighb, < New_Neighbor(v)
E[u, v] < (TRUE ,neighb,,neighb,)

If £(u) > ¢(v):

then:  Ny,(v).add(neighb,), dyy(v) + +
else:  N<(v).add(neighb,), d<(v) + +

If d<(v)+ dzzv)(v) > CB“Y) then Qs.push(v)
If £(v) > (u):

then:  Ny,)(u).add(neighb, ), dy,)(u) + +
else:  N<(u).add(neighb,), d<(u) + +

If d<(u)+ dzzu)(u) > CBYY) then Qs.push(u)



Maintaining the Hierarchical Partition (3)

Maintain_HP()

If Qs is not empty, then
> v+ Qs.pop()
» k < min. level > {(v) s.t. Zf'(:l di(v) < Cpk
» Move v up to level k, and update data structure
Elseif @ is not empty, then
> v Qr.pop()
> k + max. level < ((v)s.t. CAAT <Kl di(v) o level 1
» Move v down to level k, and update data structure

Else return
MAINTAIN_HP ()



Maintaining the Hierarchical Partition (3)

Maintain_HP()

If Qs is not empty, then
> v+ Qs.pop()
» k < min. level > {(v) s.t. Zf'(:l di(v) < Cpk
» Move v up to level k, and update data structure
Elseif @ is not empty, then
> v Qr.pop()
> k + max. level < ((v)s.t. CAAT <Kl di(v) o level 1
» Move v down to level k, and update data structure

Else return
MAINTAIN_HP ()

Property
In both cases we have 8X < Cpk1 < d<(v) < dS(v) < CBk



Maintaining the Hierarchical Partition (4)

GOAL: O(log A) = O(L) amortized update time
Budget function

> Budg(uv)— L — max(€(u), ((v ))
> Budg(v) = 55 max (0, CBAMI=L — d<(v))
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Maintaining the Hierarchical Partition (4)

GOAL: O(log A) = O(L) amortized update time
Budget function

» Budg(uv) = L max({(u), é(v))
> Budg(v) = 55 max (0, CHMI=L — d<(v))

When adding an edge uv the budget increase is:
ABudg(uv) + ABudg(u) + ABudg(v) < +L — % — ﬁ <L

When deleting an edge uv the budget increase is:
ABudg(uv) + ABudg(u) + ABudg(v) <0+ % + % <L
Remaining to prove

One call to MAINTAIN_HP() is done in time O(gmax({v):k)),
Show that this is O(—ABudg).
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When moving up v from level ¢(v) to k, the budget decrease is:
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1

> (Bmax (v),k) )



Maintaining the Hierarchical Partition (5)

Budget function

» Budg(uv) = L — max(¢(u), E(v))
> Budg(v) = 553 max (0, CUI=L — d<(v))

When moving up v from level ¢(v) to k, the budget decrease is:

1
ABudg(v) + Z ABudg(uv) > 0+ Z 2
ueN(v) ueN(v) with £(u)<k
1

> (Bmax (v),k) )

When moving down v from level ¢(v) to k: similar ;-)



Coloring with arboricity «
Limits of explicit colorings
Implicit & deterministic 2°(®)-coloring
Implicit & deterministic O(a?)-coloring



Introduction

(A + 1)-coloring with O(log n) amortized update time

Coloring with arboricity «
Limits of explicit colorings



N
g



3-colorings of dynamic forests

vV
LV



3-colorings of dynamic forests

N =z
S —
= =



3-colorings of dynamic forests



3-colorings of dynamic forests

V\AFF

ﬂ %“

\% @5

=

~—~ec®



3-colorings of dynamic forests

|
Vl/3 S"A(g S y
n'3

After O(n/3) updates, either
» the thick stars remain 2-colored:
0(n'/3) x O(n'/3) color changes.
» some thin star has gets a blue root:
O(n?/3) color changes at leaves.
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O(«)-forest decomposition

Data structure

» Forests F1,...,Fp

> o*=0(a)st. ;=0 Vi>a*

> VF; VT € F; is a rooted.

» Query : DIST_-TO_ROOT(v, /) O(log n) time



O(«)-forest decomposition

Data structure

» Forests F1,...,Fp

> o*=0(a)st. ;=0 Vi>a*

> VF; VT € F; is a rooted.

» Query : DIST_-TO_ROOT(v, /) O(log n) time

Query: COLOR(V)

return (...,DIST_TO_ROOT(v,i) mod 2,...)
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Reducing to O(a*) colors

a*-out orientations
Vv dt(v) <a*

r-cover free family

There exists a family S of 2% subsets of {1,...,a**} such that:
>»vVS5csS
>V S,...,S5.+ €S
» Thereis a color c € S\ (US)).

2" _coloring ¢;
— a**-coloring ¢

— a*?-coloring c3



Thank you !
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