
Dynamic graphs & vertex coloring

Daniel Gonçalves, LIRMM, Univ. Montpellier & CNRS

JCRAALMA, 15th January 2024 based on

[BCHN18] Dynamic algorithms for graph coloring, by Sayan Bhattacharya,
Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai, SODA

2018.

[BCK+19] Dynamic graph coloring, by Luis Barba, Jean Cardinal, Matias
Korman, Stefan Langerman, André van Renssen, Marcel Roeloffzen, and Sander

Verdonschot, Algorithmica, 2019.

[HNW20] Explicit and implicit dynamic coloring of graphs with bounded
arboricity, by Monika Henzinger, Stefan Neumann, and Andreas Wiese, ArXiv

2020.

[CNR23] Improved Dynamic Colouring of Sparse Graphs, by Aleksander B.G.
Christiansen, Krzysztof Nowicki, and Eva Rotenberg, STOC 2023.

Introduction

(∆ + 1)-coloring with O(log n) amortized update time
Warmup
Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit & deterministic 2O(α)-coloring
Implicit & deterministic O(α2)-coloring

Introduction

(∆ + 1)-coloring with O(log n) amortized update time
Warmup
Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit & deterministic 2O(α)-coloring
Implicit & deterministic O(α2)-coloring

Dynamic graph

Dynamic graph G :

▶ A fixed vertex set V , with n = |V |.
▶ A sequence of updates (edge additions/deletions): (±ei)1≤i≤t

▶ Initially, the edge set is empty : E0 = ∅.
▶ If the i th update is a +ei , then Ei = Ei−1 ∪ {ei}.
▶ If the i th update is a −ei , then Ei = Ei−1 \ {ei}.

=⇒ a sequence of graphs: ((V ,Ei))0≤i≤t

Combinatorial Problem Π

▶ We want solutions of Π for the graphs (V ,Ei).

▶ Computing a solution for (V ,Ei), should be easier given a
solution of (V ,Ei−1).

Dynamic graph

Dynamic graph G :

▶ A fixed vertex set V , with n = |V |.
▶ A sequence of updates (edge additions/deletions): (±ei)1≤i≤t

▶ Initially, the edge set is empty : E0 = ∅.
▶ If the i th update is a +ei , then Ei = Ei−1 ∪ {ei}.
▶ If the i th update is a −ei , then Ei = Ei−1 \ {ei}.

=⇒ a sequence of graphs: ((V ,Ei))0≤i≤t

Combinatorial Problem Π

▶ We want solutions of Π for the graphs (V ,Ei).

▶ Computing a solution for (V ,Ei), should be easier given a
solution of (V ,Ei−1).

Algorithms for dynamic graphs

Updating a solution (for some problem Π) while G evolves

▶ Given a preset sequence of updates

(oblivious adversary)

.

▶ Start with a solution Sol0 ∈ Π((V ,E0)).
▶ Goal: correct Sol0 after i updates to obtain Soli .

Two ways:
▶ Explicitly: a current solution is stored in memory.

Update the solution (Soli−1 −→ Soli) so that Soli ∈ Π(V ,Ei).
▶ Implicitly: a solution can be retrieved from queries.

Algorithms for dynamic graphs

Updating a solution (for some problem Π) while G evolves

▶ Given a preset sequence of updates (oblivious adversary).

▶ Start with a solution Sol0 ∈ Π((V ,E0)).
▶ Goal: correct Sol0 after i updates to obtain Soli .

Two ways:
▶ Explicitly: a current solution is stored in memory.

Update the solution (Soli−1 −→ Soli) so that Soli ∈ Π(V ,Ei).
▶ Implicitly: a solution can be retrieved from queries.

Algorithms for dynamic graphs

Updating a solution (for some problem Π) while G evolves

▶ Given a preset sequence of updates (oblivious adversary).

▶ Start with a solution Sol0 ∈ Π((V ,E0)).
▶ Goal: correct Sol0 after i updates to obtain Soli .Two ways:

▶ Explicitly: a current solution is stored in memory.
Update the solution (Soli−1 −→ Soli) so that Soli ∈ Π(V ,Ei).

▶ Implicitly: a solution can be retrieved from queries.

Algorithms for dynamic graphs

Updating a solution (for some problem Π) while G evolves

▶ Given a preset sequence of updates (oblivious adversary).

▶ Start with a solution Sol0 ∈ Π((V ,E0)).
▶ Goal: correct Sol0 after i updates to obtain Soli .Two ways:

▶ Explicitly: a current solution is stored in memory.
Update the solution (Soli−1 −→ Soli) so that Soli ∈ Π(V ,Ei).

▶ Implicitly: a solution can be retrieved from queries.

Time complexity measures

Case of explicit algorithms

▶ Time complexity per update.
It can be
Worst-case: maximum complexity for Soli−1 −→ Soli ,
or
Amortized: Complexity(Sol0 −→ Solt) / t for a suff. large t.

Case of implicit algorithms

▶ Twofold complexity: per update & per query.
Also, worst-case/amortized options.

For randomized algorithms, the measures can be weakened : e.g.
provided in expectation, or with high probability.

Time complexity measures

Case of explicit algorithms

▶ Time complexity per update.
It can be
Worst-case: maximum complexity for Soli−1 −→ Soli ,
or
Amortized: Complexity(Sol0 −→ Solt) / t for a suff. large t.

Case of implicit algorithms

▶ Twofold complexity: per update & per query.
Also, worst-case/amortized options.

For randomized algorithms, the measures can be weakened : e.g.
provided in expectation, or with high probability.

Time complexity measures

Case of explicit algorithms

▶ Time complexity per update.
It can be
Worst-case: maximum complexity for Soli−1 −→ Soli ,
or
Amortized: Complexity(Sol0 −→ Solt) / t for a suff. large t.

Case of implicit algorithms

▶ Twofold complexity: per update & per query.
Also, worst-case/amortized options.

For randomized algorithms, the measures can be weakened : e.g.
provided in expectation, or with high probability.

Coloring with respect to ∆ or the arboricity α

Brooks theorem

χ(G) ≤ ∆+ 1

Arboricity α(G)

▶ α(G) : min k s.t. G decomposes into k forests.

▶ Every graph G has at most α(G)× (n − 1) edges.

▶ Every graph G is (2α(G)− 1)-degenerate.

χ(G) ≤ 2α(G)

Coloring with respect to ∆ or the arboricity α

Brooks theorem

χ(G) ≤ ∆+ 1

Arboricity α(G)

▶ α(G) : min k s.t. G decomposes into k forests.

▶ Every graph G has at most α(G)× (n − 1) edges.

▶ Every graph G is (2α(G)− 1)-degenerate.

χ(G) ≤ 2α(G)

Coloring with respect to ∆ or the arboricity α

Brooks theorem

χ(G) ≤ ∆+ 1

Arboricity α(G)

▶ α(G) : min k s.t. G decomposes into k forests.

▶ Every graph G has at most α(G)× (n − 1) edges.

▶ Every graph G is (2α(G)− 1)-degenerate.

χ(G) ≤ 2α(G)

Coloring with respect to ∆ or the arboricity α

Brooks theorem

χ(G) ≤ ∆+ 1

Arboricity α(G)

▶ α(G) : min k s.t. G decomposes into k forests.

▶ Every graph G has at most α(G)× (n − 1) edges.

▶ Every graph G is (2α(G)− 1)-degenerate.

χ(G) ≤ 2α(G)

Colorings in dynamic graphs

Explicit (∆ + 1)-coloring

▶ O(log∆) expected amortized update time [BCHN18]

f (α, n)-colorings

▶ Explicit O(α log n)-coloring, with
O(log2 n) expected amortized update time. [HNW20]

▶ For explicit f (α)-coloring,
the update time is Ω(poly(n)). [BCK+19]

▶ Implicit & deterministic 2O(α)-coloring, with
O(log3 n) amortized update time, and
O(α log n) query time. [HNW20]

▶ Implicit & deterministic O(α2)-coloring, with
O(logα log3 n) worst-case update time, and
O(α5 log n) query time. [CNR23]

Colorings in dynamic graphs

Explicit (∆ + 1)-coloring

▶ O(log∆) expected amortized update time [BCHN18]

f (α, n)-colorings

▶ Explicit O(α log n)-coloring, with
O(log2 n) expected amortized update time. [HNW20]

▶ For explicit f (α)-coloring,
the update time is Ω(poly(n)). [BCK+19]

▶ Implicit & deterministic 2O(α)-coloring, with
O(log3 n) amortized update time, and
O(α log n) query time. [HNW20]

▶ Implicit & deterministic O(α2)-coloring, with
O(logα log3 n) worst-case update time, and
O(α5 log n) query time. [CNR23]

Colorings in dynamic graphs

Explicit (∆ + 1)-coloring

▶ O(log∆) expected amortized update time [BCHN18]

f (α, n)-colorings

▶ Explicit O(α log n)-coloring, with
O(log2 n) expected amortized update time. [HNW20]

▶ For explicit f (α)-coloring,
the update time is Ω(poly(n)). [BCK+19]

▶ Implicit & deterministic 2O(α)-coloring, with
O(log3 n) amortized update time, and
O(α log n) query time. [HNW20]

▶ Implicit & deterministic O(α2)-coloring, with
O(logα log3 n) worst-case update time, and
O(α5 log n) query time. [CNR23]

Colorings in dynamic graphs

Explicit (∆ + 1)-coloring

▶ O(log∆) expected amortized update time [BCHN18]

f (α, n)-colorings

▶ Explicit O(α log n)-coloring, with
O(log2 n) expected amortized update time. [HNW20]

▶ For explicit f (α)-coloring,
the update time is Ω(poly(n)). [BCK+19]

▶ Implicit & deterministic 2O(α)-coloring, with
O(log3 n) amortized update time, and
O(α log n) query time. [HNW20]

▶ Implicit & deterministic O(α2)-coloring, with
O(logα log3 n) worst-case update time, and
O(α5 log n) query time. [CNR23]

Colorings in dynamic graphs

Explicit (∆ + 1)-coloring

▶ O(log∆) expected amortized update time [BCHN18]

f (α, n)-colorings

▶ Explicit O(α log n)-coloring, with
O(log2 n) expected amortized update time. [HNW20]

▶ For explicit f (α)-coloring,
the update time is Ω(poly(n)). [BCK+19]

▶ Implicit & deterministic 2O(α)-coloring, with
O(log3 n) amortized update time, and
O(α log n) query time. [HNW20]

▶ Implicit & deterministic O(α2)-coloring, with
O(logα log3 n) worst-case update time, and
O(α5 log n) query time. [CNR23]

Introduction

(∆ + 1)-coloring with O(log n) amortized update time
Warmup
Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit & deterministic 2O(α)-coloring
Implicit & deterministic O(α2)-coloring

Introduction

(∆ + 1)-coloring with O(log n) amortized update time
Warmup
Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit & deterministic 2O(α)-coloring
Implicit & deterministic O(α2)-coloring

2∆-coloring with O(1) expected amortized update time

Current coloring stored in a table c[·].

Update algorithm after deleting (u, v)

▶ Do nothing

Update algorithm after adding (u, v)

▶ If c[u] ̸= c[v]: do nothing.

▶ If c[u] = c[v]:
c(v)← pick a color absent from N(v) u.a.r..

2∆-coloring with O(1) expected amortized update time

Current coloring stored in a table c[·].

Update algorithm after deleting (u, v)

▶ Do nothing Time O(1)

Update algorithm after adding (u, v)

▶ If c[u] ̸= c[v]: do nothing. Time O(1)

▶ If c[u] = c[v]: This case happen with proba. ≤ 1/∆.
c(v)← pick a color absent from N(v) u.a.r.. Time O(∆)

2∆-coloring with O(1) expected amortized update time

Neighborhoods stored with two tables N[·] and E [·, ·].

Update algorithm after deleting (u, v)

▶ Remove u from N(v) & v from N(u) Time O(1)

Update algorithm after adding (u, v)

▶ Add u in N(v) & v in N(u) Time O(1)

▶ If c[u] ̸= c[v]: do nothing. Time O(1)

▶ If c[u] = c[v]: This case happen with proba. ≤ 1/∆.
c(v)← pick a color absent from N(v) u.a.r.. Time O(∆)

(1 + ϵ)∆-coloring with O(1/ϵ) exp. amortized update time

Current coloring stored in a table c[·].

Update algorithm after deleting (u, v)

▶ Do nothing Time O(1)

Update algorithm after adding (u, v)

▶ If c[u] ̸= c[v]: do nothing. Time O(1)

▶ If c[u] = c[v]: This case happen with proba. ≤ 1/ϵ∆.
c(v)← pick a color absent from N(v) u.a.r.. Time O(∆)

When recoloring,
the algorithm picks among at least (1 + ϵ)∆− |N(v)| ≥ ϵ∆ colors.

Setting ϵ = 1/∆, we have a
(∆ + 1)-coloring with O(∆) expected amortized update time.

(1 + ϵ)∆-coloring with O(1/ϵ) exp. amortized update time

Current coloring stored in a table c[·].

Update algorithm after deleting (u, v)

▶ Do nothing Time O(1)

Update algorithm after adding (u, v)

▶ If c[u] ̸= c[v]: do nothing. Time O(1)

▶ If c[u] = c[v]: This case happen with proba. ≤ 1/ϵ∆.
c(v)← pick a color absent from N(v) u.a.r.. Time O(∆)

When recoloring,
the algorithm picks among at least (1 + ϵ)∆− |N(v)| ≥ ϵ∆ colors.

Setting ϵ = 1/∆, we have a
(∆ + 1)-coloring with O(∆) expected amortized update time.

Introduction

(∆ + 1)-coloring with O(log n) amortized update time
Warmup
Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit & deterministic 2O(α)-coloring
Implicit & deterministic O(α2)-coloring

Idea for (∆ + 1)-coloring

When recoloring a vertex v : pick among O(∆) colors.

▶ Maybe few vertices in {1, . . . ,∆+ 1} \ c(N(v))

▶ But in that case, many colors of c(N(v)) are used only once.

▶ Pick among the colors used at most once in N(v), there are
∆/2.

▶ May create a ”path of recolorings”.

▶ How to bound the length of this path?

Idea for (∆ + 1)-coloring

When recoloring a vertex v : pick among O(∆) colors.

▶ Maybe few vertices in {1, . . . ,∆+ 1} \ c(N(v))

▶ But in that case, many colors of c(N(v)) are used only once.

▶ Pick among the colors used at most once in N(v), there are
∆/2.

▶ May create a ”path of recolorings”.

▶ How to bound the length of this path?

Tool : Hierarchical Partition

Partition of the vertices into levels.

▶ L levels: V1, . . . ,VL, with L = logβ ∆ for some β > 20.

▶ Level of v : ℓ(v) N<(v) = {u ∈ N(v) | ℓ(u) < ℓ(v)}
N≤(v) = {u ∈ N(v) | ℓ(u) ≤ ℓ(v)}

[Large N<(v)] : |N<(v)| ≥ βℓ(v) ∀v ∈ V unless ℓ(v) = 0.[
Small N≤(v)

]
: Cβℓ(v) ≥ |N≤(v)|

(∆ + 1)-coloring algorithm based on hierarchical partition

(∆ + 1)-coloring : After an update ±(u, v)
1) Insert(u,v) or Delete(u,v)
2) Maintain HP() assume ℓ(v) ≤ ℓ(u) w.l.o.g.
3) If necessary (i.e. +(u, v) & c(u) = c(v)) : Recolor(v)

Recolor(v)

c(v)← Pick u.a.r. among colors used at most once in N(v)
& not used in N(v) \ N<(v)

If ∃w ∈ N<(v) s.t. c(w) = c(v) : Recolor(w)

▶ Among consecutive recolorings, the level decreases.

(∆ + 1)-coloring algorithm based on hierarchical partition

(∆ + 1)-coloring : After an update ±(u, v)
1) Insert(u,v) or Delete(u,v)
2) Maintain HP() assume ℓ(v) ≤ ℓ(u) w.l.o.g.
3) If necessary (i.e. +(u, v) & c(u) = c(v)) : Recolor(v)

Recolor(v)

c(v)← Pick u.a.r. among colors used at most once in N(v)
& not used in N(v) \ N<(v)

If ∃w ∈ N<(v) s.t. c(w) = c(v) : Recolor(w)

▶ Among consecutive recolorings, the level decreases.

(∆ + 1)-coloring algorithm based on hierarchical partition

(∆ + 1)-coloring : After an update ±(u, v)
1) Insert(u,v) or Delete(u,v)
2) Maintain HP() assume ℓ(v) ≤ ℓ(u) w.l.o.g.
3) If necessary (i.e. +(u, v) & c(u) = c(v)) : Recolor(v)

Recolor(v)

c(v)← Pick u.a.r. among colors used at most once in N(v)
& not used in N(v) \ N<(v)

If ∃w ∈ N<(v) s.t. c(w) = c(v) : Recolor(w)

▶ Among consecutive recolorings, the level decreases.

Maintaining the Hierarchical Partition (1)

Data structure

▶ Matrix E

▶ Doubly chained lists Li ∀i

For every v ∈ V :

▶ ℓ(v)

▶ N<(v) = {u ∈ N(v) | ℓ(u) < ℓ(v)} & d<(v) = |N<(v)|
▶ Ni = N(v) ∩ Li and di (v) = |Ni (v)| ∀i s.t. ℓ(v) ≤ i ≤ L.

For properties [Large N<(v)] &
[
Small N≤(v)

]
▶ QL & QS : Queues with vertices violating these properties

Maintaining the Hierarchical Partition (2)

Insert(u,v)

▶ neighbu ← New Neighbor(u)

▶ neighbv ← New Neighbor(v)

▶ E [u, v]← (TRUE ,neighbu,neighbv)

▶ If ℓ(u) ≥ ℓ(v):
then: Nℓ(u)(v).add(neighbu), dℓ(u)(v) + +
else: N<(v).add(neighbu), d

<(v) + +

▶ If d<(v) + d+
ℓ(v)(v) > Cβℓ(v) then QS .push(v)

▶ If ℓ(v) ≥ ℓ(u):
then: Nℓ(v)(u).add(neighbv), dℓ(v)(u) + +
else: N<(u).add(neighbv), d

<(u) + +

▶ If d<(u) + d+
ℓ(u)(u) > Cβℓ(u) then QS .push(u)

Maintaining the Hierarchical Partition (3)

Maintain HP()

If QS is not empty, then

▶ v ← QS .pop()

▶ k ← min. level > ℓ(v) s.t.
∑k

i=1 di (v) ≤ Cβk

▶ Move v up to level k , and update data structure

Elseif QL is not empty, then

▶ v ← QL.pop()

▶ k ← max. level < ℓ(v) s.t. Cβk−1 ≤
∑k−1

i=1 di (v) or level 1

▶ Move v down to level k , and update data structure

Else return
Maintain HP()

Property

In both cases we have βk < Cβk−1 ≤ d<(v) ≤ d≤(v) ≤ Cβk

Maintaining the Hierarchical Partition (3)

Maintain HP()

If QS is not empty, then

▶ v ← QS .pop()

▶ k ← min. level > ℓ(v) s.t.
∑k

i=1 di (v) ≤ Cβk

▶ Move v up to level k , and update data structure

Elseif QL is not empty, then

▶ v ← QL.pop()

▶ k ← max. level < ℓ(v) s.t. Cβk−1 ≤
∑k−1

i=1 di (v) or level 1

▶ Move v down to level k , and update data structure

Else return
Maintain HP()

Property

In both cases we have βk < Cβk−1 ≤ d<(v) ≤ d≤(v) ≤ Cβk

Maintaining the Hierarchical Partition (4)

GOAL: O(log∆) = O(L) amortized update time

Budget function

▶ Budg(uv) = L−max(ℓ(u), ℓ(v))

▶ Budg(v) = 1
2β max

(
0,Cβℓ(v)−1 − d<(v)

)

When adding an edge uv the budget increase is:
∆Budg(uv) + ∆Budg(u) + ∆Budg(v) ≤ +L− 1

2β −
1
2β < L

When deleting an edge uv the budget increase is:
∆Budg(uv) + ∆Budg(u) + ∆Budg(v) ≤ 0 + 1

2β + 1
2β < L

Remaining to prove

One call to Maintain HP() is done in time O(βmax(ℓ(v),k)).
Show that this is O(−∆Budg).

Maintaining the Hierarchical Partition (4)

GOAL: O(log∆) = O(L) amortized update time

Budget function

▶ Budg(uv) = L−max(ℓ(u), ℓ(v))

▶ Budg(v) = 1
2β max

(
0,Cβℓ(v)−1 − d<(v)

)
When adding an edge uv the budget increase is:
∆Budg(uv) + ∆Budg(u) + ∆Budg(v) ≤ +L− 1

2β −
1
2β < L

When deleting an edge uv the budget increase is:
∆Budg(uv) + ∆Budg(u) + ∆Budg(v) ≤ 0 + 1

2β + 1
2β < L

Remaining to prove

One call to Maintain HP() is done in time O(βmax(ℓ(v),k)).
Show that this is O(−∆Budg).

Maintaining the Hierarchical Partition (4)

GOAL: O(log∆) = O(L) amortized update time

Budget function

▶ Budg(uv) = L−max(ℓ(u), ℓ(v))

▶ Budg(v) = 1
2β max

(
0,Cβℓ(v)−1 − d<(v)

)
When adding an edge uv the budget increase is:
∆Budg(uv) + ∆Budg(u) + ∆Budg(v) ≤ +L− 1

2β −
1
2β < L

When deleting an edge uv the budget increase is:
∆Budg(uv) + ∆Budg(u) + ∆Budg(v) ≤ 0 + 1

2β + 1
2β < L

Remaining to prove

One call to Maintain HP() is done in time O(βmax(ℓ(v),k)).
Show that this is O(−∆Budg).

Maintaining the Hierarchical Partition (5)

Budget function

▶ Budg(uv) = L−max(ℓ(u), ℓ(v))

▶ Budg(v) = 1
2β max

(
0,Cβℓ(v)−1 − d<(v)

)

When moving up v from level ℓ(v) to k , the budget decrease is:

∆Budg(v) +
∑

u∈N(v)

∆Budg(uv) ≥ 0 +
∑

u∈N(v) with ℓ(u)<k

1

2β

≥ Cβk−1 1

2β

≥ O(βmax(ℓ(v),k))

When moving down v from level ℓ(v) to k : similar ;-)

Maintaining the Hierarchical Partition (5)

Budget function

▶ Budg(uv) = L−max(ℓ(u), ℓ(v))

▶ Budg(v) = 1
2β max

(
0,Cβℓ(v)−1 − d<(v)

)
When moving up v from level ℓ(v) to k , the budget decrease is:

∆Budg(v) +
∑

u∈N(v)

∆Budg(uv) ≥ 0 +
∑

u∈N(v) with ℓ(u)<k

1

2β

≥ Cβk−1 1

2β

≥ O(βmax(ℓ(v),k))

When moving down v from level ℓ(v) to k : similar ;-)

Maintaining the Hierarchical Partition (5)

Budget function

▶ Budg(uv) = L−max(ℓ(u), ℓ(v))

▶ Budg(v) = 1
2β max

(
0,Cβℓ(v)−1 − d<(v)

)
When moving up v from level ℓ(v) to k , the budget decrease is:

∆Budg(v) +
∑

u∈N(v)

∆Budg(uv) ≥ 0 +
∑

u∈N(v) with ℓ(u)<k

1

2β

≥ Cβk−1 1

2β

≥ O(βmax(ℓ(v),k))

When moving down v from level ℓ(v) to k : similar ;-)

Introduction

(∆ + 1)-coloring with O(log n) amortized update time
Warmup
Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit & deterministic 2O(α)-coloring
Implicit & deterministic O(α2)-coloring

Introduction

(∆ + 1)-coloring with O(log n) amortized update time
Warmup
Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit & deterministic 2O(α)-coloring
Implicit & deterministic O(α2)-coloring

2-colorings of dynamic forests

3-colorings of dynamic forests

3-colorings of dynamic forests

3-colorings of dynamic forests

3-colorings of dynamic forests

3-colorings of dynamic forests

After O(n1/3) updates, either
▶ the thick stars remain 2-colored:

O(n1/3)× O(n1/3) color changes.
▶ some thin star has gets a blue root:

O(n2/3) color changes at leaves.

Introduction

(∆ + 1)-coloring with O(log n) amortized update time
Warmup
Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit & deterministic 2O(α)-coloring
Implicit & deterministic O(α2)-coloring

O(α)-forest decomposition

Data structure

▶ Forests F1, . . . ,Fn
▶ α∗ = O(α) s.t. Fi = ∅ ∀i > α∗

▶ ∀Fi ∀T ∈ Fi is a rooted.

▶ Query : Dist to root(v , i) O(log n) time

Query: Color(v)

return (. . . ,dist to root(v , i) mod 2, . . .)

O(α)-forest decomposition

Data structure

▶ Forests F1, . . . ,Fn
▶ α∗ = O(α) s.t. Fi = ∅ ∀i > α∗

▶ ∀Fi ∀T ∈ Fi is a rooted.

▶ Query : Dist to root(v , i) O(log n) time

Query: Color(v)

return (. . . ,dist to root(v , i) mod 2, . . .)

Introduction

(∆ + 1)-coloring with O(log n) amortized update time
Warmup
Algorithm with Hierarchical Partition

Coloring with arboricity α
Limits of explicit colorings
Implicit & deterministic 2O(α)-coloring
Implicit & deterministic O(α2)-coloring

Reducing to O(α4) colors

α∗-out orientations

∀v d+(v) ≤ α∗

r -cover free family

There exists a family S of 2α
∗
subsets of {1, . . . , α∗4} such that:

▶ ∀ S ∈ S
▶ ∀ S1, . . . ,Sα∗ ∈ S
▶ There is a color c ∈ S \ (∪Si).

2α
∗
-coloring c1

=⇒ α∗4-coloring c2

=⇒ α∗2-coloring c3

Reducing to O(α4) colors

α∗-out orientations

∀v d+(v) ≤ α∗

r -cover free family

There exists a family S of 2α
∗
subsets of {1, . . . , α∗4} such that:

▶ ∀ S ∈ S
▶ ∀ S1, . . . ,Sα∗ ∈ S
▶ There is a color c ∈ S \ (∪Si).

2α
∗
-coloring c1

=⇒ α∗4-coloring c2

=⇒ α∗2-coloring c3

Reducing to O(α4) colors

α∗-out orientations

∀v d+(v) ≤ α∗

r -cover free family

There exists a family S of 2α
∗
subsets of {1, . . . , α∗4} such that:

▶ ∀ S ∈ S
▶ ∀ S1, . . . ,Sα∗ ∈ S
▶ There is a color c ∈ S \ (∪Si).

2α
∗
-coloring c1

=⇒ α∗4-coloring c2

=⇒ α∗2-coloring c3

Reducing to O(α4) colors

α∗-out orientations

∀v d+(v) ≤ α∗

r -cover free family

There exists a family S of 2α
∗
subsets of {1, . . . , α∗4} such that:

▶ ∀ S ∈ S
▶ ∀ S1, . . . ,Sα∗ ∈ S
▶ There is a color c ∈ S \ (∪Si).

2α
∗
-coloring c1

=⇒ α∗4-coloring c2

=⇒ α∗2-coloring c3

Thank you !

	Introduction
	(+1)-coloring with O(n) amortized update time
	Warmup
	Algorithm with Hierarchical Partition

	Coloring with arboricity
	Limits of explicit colorings
	Implicit & deterministic 2O()-coloring
	Implicit & deterministic O(2)-coloring

